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Abstract. Positron clouds are compressed following accumulation in a Surko-
type two-stage buffer gas trap using an asymmetric rotating wall electric field.
An analytic theory used to describe measurements of the rate of compression
is discussed. Furthermore, we describe measurements taken without the rotating
wall applied and with the rotating wall compression present during accumulation
of the positron cloud. This has enabled total loss rates for the positrons via
annihilation and collisional-induced radial transport to be isolated, with the latter
mechanism found to be dominant. We have shown that the application of the
rotating wall at a resonant frequency virtually eliminates radial transport, such
that the positron loss is caused by annihilation in the gas.
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1. Introduction

The accumulation and manipulation of low-energy positrons using buffer gas-based devices,
pioneered by Surko and co-workers [1–3], is now routine in many laboratories around the
world; see, e.g., [4–6]. The ability to accumulate large numbers of positrons has proved crucial
in efforts to produce cold and trapped antihydrogen [7–13] and to provide large instantaneous
fluxes of positrons in the study of systems containing more than one positronium atom [14, 15].

Positrons are typically stored in a Penning–Malmberg-type trap, into which they fall and
are then cooled, via collisions with a buffer gas, typically molecular nitrogen as is used in
the present study. In these traps, electrical potentials applied to cylindrical electrodes provide
confinement of the particles along the axis of the instrument, whereas radial confinement is
provided by an axial magnetic field, B, typically of strength greater than several hundreds of
Gauss. Under certain conditions, usually when the accumulator has three stages, with each stage
held at a lower pressure than the one preceding it, positron lifetimes can range from tens to
hundreds of seconds and many millions of them can be collected. Here, the positron cloud can
be sufficiently dense, i.e. the Debye screening length is much smaller than the cloud dimensions,
to form a so-called single-component plasma [1, 8, 16, 17]. Once in this state the combination
of the radial self-electric field of the plasma and the applied magnetic field causes the plasma
to rotate about the axis of the system with a constant angular frequency, ωd = neq/2εo B, where
ne is the plasma density and q and εo are the charge of the particles and the vacuum dielectric
constant, respectively.

Many devices that can be used to store single-component electron and positron plasmas
(see e.g. [18] for descriptions of recent studies) have a section which contains an electrode that
is azimuthally split into several (typically 4) segments. It has been known for some time that
using these electrodes to apply a rotating electric field can arrest plasma expansion or even
actively compress the cloud [19–24]. The precise mechanism for this need not concern us here,
but the rotating wall is typically applied at a frequency greater than ωd/2π and in the same sense
as the natural rotation of the plasma, and to achieve compression some form of active cooling
of the trapped particles is required. The latter, for instance for positrons, can be provided in
high-magnetic-field (typically >1 T) systems by the emission of synchrotron radiation [8] or
otherwise by the addition of a cooling gas to the system [5, 21].
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The common feature of all these studies is that the positrons must be in the plasma state for
the rotating wall to be effective. Indeed, early work with the ATHENA positron accumulator [25]
showed that application of the rotating wall (at a frequency appropriate for plasma compression)
in the pre-plasma stage of accumulation had a deleterious effect on the accumulation rate.

However, pioneering work by Greaves and co-workers [5, 26] has shown that a rotating
wall can be used to compress a cloud of positrons in the so-called single-particle (i.e. pre-
plasma) regime. That work demonstrated that application of a rotating wall of frequency at, or
close to, the axial bounce frequency of the particles in the trap, ωz = (qVt/md2

t )
1/2, where Vt

and dt are trap parameters, respectively the electrical depth and length of the trap, and m is the
mass, results in a compression of a positron cloud. Increases in central density of the cloud by a
factor of about 100 were achieved [26].

This new technique holds promise for applications in positron accumulation, and in
particular, for two-stage accumulators (see, e.g., [4–6]). These instruments are significantly
cheaper and easier to operate than three-stage devices, which typically require a large
electromagnet [1, 8] or a superconducting solenoid [5] for their operation. They are, for instance,
beginning to find applications in atomic physics [27], where they can be used to provide narrow
energy width beams [28] for the new field of high-resolution positron scattering.

Motivated by the work of Greaves and Moxom [26], we developed a new theory
explaining single-particle compression in terms of sideband cooling [29]. Measurements on
positron clouds, using the modified Swansea two-stage accumulator [4] that incorporates a split
electrode as a means of introducing the rotating wall, corroborated the theory. The compression
measurements were carried out on a cloud of positrons after the accumulation process was
halted. In this paper, we will expand upon that work by studying the effect of applying the
rotating wall during accumulation and also by investigating the role of different cooling gases.
The remainder of the paper is organized as follows. Section 2 will briefly summarize the
compression theory, whereas in section 3 we provide details of our apparatus and techniques.
Results and discussion will be presented in section 4, followed by the concluding remarks in
section 5.

2. Theory

Charged particles in an ideal Penning trap are radially confined by a magnetic field, B = Bẑ,
where the z-axis is the axis of cylindrical symmetry, and axially by the potential

φ(z, r) =
m

q

ω2
z

2

(
z2

−
r 2

2

)
. (1)

For a zero potential, i.e. ωz = 0, the particle only experiences a magnetic force and will exhibit
a so-called cyclotron motion with frequency �c = q B/m, superposed on a constant velocity in
the z-direction. Adding the Penning trap potential given by equation (1) changes the constant
velocity into an axial bounce motion with frequency ωz and gives rise to E × B fields, which
modify �c into ω+, and cause the particle to exhibit magnetron motion with a frequency ω−

(also called ωm). These frequencies are given by ω± =
1
2(�c ±

√
�2

c − 2ω2
z ). Typically,

ω+ � ωz � ω− (2)

for a trapped particle.
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The application of a rotating wall electric dipole field, asymmetric in the z-direction, can
be described by adding a rotating wall potential to equation (1), resulting in

φ(z, r, θ) =
m

q

ω2
z

2

(
z2

−
r 2

2

)
+

m

q
azr cos(θ + ωr t), (3)

where ωr is the drive frequency and a is related to the amplitude of the potential. Assuming that
the cooling can be described by a Stokes viscous drag, i.e. there is a friction term proportional to
the velocity of the particle with κ being the constant of proportionality, the equations of motion
are then given by

ẍ =
ω2

z

2
x − az cos(ωr t) + �c ẏ − κ ẋ,

ÿ =
ω2

z

2
y + az sin(ωr t) − �c ẋ − κ ẏ, (4)

z̈ = −ω2
z z − a[x cos(ωr t) − y sin(ωr t)] − κ ż.

Changing to a rotating coordinate system defined by V ±
= ṙ + ω∓ẑ× r (for more details

see the review by Brown and Gabrielse [30]) decouples the magnetron (−) and cyclotron (+)
motions, so equation (4) transforms to

V̇ ±

x = ω±V ±

y − κ

[
V ±

x +
ω∓

ω+ − ω−

(V +
x − V −

x )

]
− az cos (ωr t), (5a)

V̇ ±

y = − ω±V ±

x − κ

[
V ±

y +
ω∓

ω+ − ω−

(V +
y − V −

y )

]
+ az sin (ωr t), (5b)

z̈ = −ω2
z z − κ ż −

a

ω+ − ω−

[
(V −

y − V +
y ) cos (ωr t) − (V +

x − V −

x ) sin (ωr t)
]
. (5c)

As will be shown, the maximum compression rate occurs when the drive frequency
is equal to (ωz + ω−), which according to equation (2) is much smaller than ω+. This
effectively decouples the magnetron and cyclotron motions, so the latter can be neglected [30].
Furthermore, because ω− � ω+ the friction terms in (5a) and (5b) can be neglected, giving rise
to the following simplification:

V̇ −

x = −ω−V −

y − az cos (ωr t),

V̇ −

y = ω−V −

x + az sin (ωr t), (6)

z̈ = −ω2
z z − κ ż +

a

ω+ − ω−

(
V −

y cos (ωr t) + V −

x sin (ωr t)
)
.

The analytical solution to these equations [29] shows that the particle magnetron radius
approaches zero with a compression rate, 0, given by

0 =
κ

4

1 −

√
(ωr − ω0)2

δ2 + (ωr − ω0)2

 , (7)

where ω0 = ωz + ω− and the width, δ, is dependent on the applied rotating wall amplitude and
trap parameters via

δ =
a

√
(ω+ − ω−)ωz

. (8)
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Figure 1. Schematic diagram of the measurement system. The hole radius in
plate 1 is 1 mm.

3. Experimental details

As discussed in section 1, the experimental apparatus used for this study has been adapted from
Swansea’s pre-existing two-stage accumulator described in detail elsewhere [4] with significant
equipment changes highlighted where relevant below. Previously, a 27 mCi (1 GBq) 22Na source
and a solid neon moderator provided a quasi-mono-energetic beam of (3–4) × 106 e+s−1 to
the positron accumulator located 2 m downstream. Currently, a 16 mCi (∼0.6 GBq) source
is employed but due to improvements in efficiency and technique, a comparable number
of positrons are still available for accumulation via a similar approach. With respect to the
apparatus, the main variation between that used here and previously [4] is the replacement of a
49 mm length second-stage electrode with a four-quadrant azimuthally segmented electrode and
another shorter, cylindrical electrode (see figure 1). Each has an axial length of 24 mm, resulting
in no overall change to the accumulator dimensions (the additional 1 mm being occupied by
the electrical isolation provided by the sapphire spheres positioned between the electrodes).
Attached to each segment is a voltage source that permits the application of a static potential,
required for establishing the accumulation trap, combined with oscillating potentials, which
give rise to the time-dependent radial potential of the rotating wall. The sinusoidal signals,
produced by the two channels of an NF Wavefactory multichannel synthesizer (each channel
having an initial phase difference of 90◦), were split by standard 180◦ phase splitters to give the
four components (0◦, 90◦, 180◦ and 270◦) of the sinusoidal potential required. As also stated in
section 1, it is necessary to provide an additional (to the nitrogen buffer that promotes capture
into the trap) cooling gas within the second stage when the rotating wall is applied. To facilitate
this, a further gas inlet has been installed in the second pumping box. The pressure, measured
using a cold cathode Penning gauge, was typically (1–70) × 10−6 mbar and varied by .5%
over a measurement period of hours. Because the nitrogen gas is inserted in the first stage, the
nitrogen pressure in the second stage is about a factor of 5 higher than measured externally in
the pumping box, based on pressure gradient calculations [31].

After accumulation and optional subsequent compression, the positrons were released by
lowering the gate electrode, whereupon one of two detection methods was employed. The first
method was to view the positron dumps on a phosphor screen with a charge-coupled device
(CCD) camera which permitted many aspects of the resulting cloud to be determined, including
the total number of particles it contained, its radial size and density profile. However, this
technique suffered from a low signal-to-background ratio. The inability to synchronize the CCD
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measurement with positron ejection resulted in the CCD signal being integrated over the whole
measurement (up to 2000 s in many cases) while being exposed to the effect of the continuous
high-energy positron beam from the source incident upon the phosphor screen. A background
image had to be taken and subtracted to reveal the signal due to the release of the clouds.

The second method is depicted in figure 1. Ejected positrons on a trajectory with a radius
larger than that of the hole (r0) annihilate on plate 1, whereas the remaining positrons will reach
plate 2. The number of positrons, N1 and N2, respectively, are derived from the recordings of
the annihilation signals observed by the thallium-doped, caesium iodide crystals attached to a
photosensitive PIN diode and preamplifier.

The magnetron kinetic energy, Em, of the particles with magnetron amplitude, Am, is given
by

Em =
1
2mω2

m A2
m. (9)

Assuming that the particles are non-interacting and thermal, the radial distribution of the
magnetron orbits, N (r), is given by

N (r) ∝ exp

(
−

Em

kBT

)
∝ exp

(
−

mω2
m A2

m

2kBT

)
, (10)

i.e. a Gaussian shape. It has been shown [32] that the width, σ , of the Gaussian can then be
derived using

σ =
r0

√
2 ln(1 + N2/N1)

. (11)

Measurements have shown that both methods gave the same width of the positron clouds,
validating the assumption mentioned above.

4. Results and discussion

4.1. Commentary

As mentioned in section 3, nitrogen is used as the main buffer gas in the accumulator.
A fortuitous feature of positron scattering from this molecule is the strong onset of the cross-
section for electronic excitation above about 9 eV, which competes effectively with positronium
formation (which is, in effect, a positron absorption channel). This has recently been observed
directly [33] and has been implied indirectly for many years by traditional positron lifetime
investigations (see, e.g., [34] for a description of this technique) that found that N2 has an
anomalously low positronium yield [35, 36]. The net effect is that N2 is the optimum gas to
promote positron capture into the accumulator, such that its presence is a prerequisite for the
efficient operation of these devices.

However, it has also been known for many years, again from positron lifetime
measurements, that, among the molecular gases, nitrogen is the poorest positron cooler, with
the lowest density-normalized cooling rate or the longest thermalization time [37–40]. Thus, if a
rapid cooling is required, which is the case here when the rotating wall is used, a further gas must
be inserted into the system. Investigations have revealed that several gases have thermalization
times about 100 times shorter than N2 [40], such that addition of small quantities of these to the
lowest potential region of the accumulator will promote positron cooling. SF6 is one such gas,
and this has been used in this study and in previous work [14, 22, 26]. We have also studied the
effects of using CO2 instead of SF6 as a cooling gas during rotating wall compression.
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Figure 2. Compression rate as a function of the rotating wall frequency for the
amplitudes of 75 mV (�) and 150 mV (•) offset by 100 s−1 and the amplitude of
225 mV (N) offset by 200 s−1. The line is fitted using equation (7). Inset: ejected
cloud radius versus the rotating wall on-time; the line is a fit to equation (12).
The uncertainties on the points in both graphs are due to scatter on repeated
measurements.

4.2. Rotating wall compression after accumulation

About 104 positrons were accumulated in 100 ms with the rotating wall switched off.
Subsequently, the accumulation was stopped and the rotating wall applied for a time t , after
which the positrons were ejected from the trap and detected as described in section 3. The cloud
radius, calculated via equation (11), can then be plotted versus t and the resulting compression
curve (see the inset of figure 2) fitted using

σ(t) = (σ0 − γ /0) exp(−0t) + γ /0. (12)

Here, σ0 is the width of the cloud at t = 0. The origin of the coefficient γ is not yet understood,
but it is likely to be related to collisions with the buffer and cooling gases and the presence of
trap field asymmetries, both of which are known to cause cloud expansion, at least in the plasma
regime [41, 42].

The main graph in figure 2 shows the compression rate as a function of the applied rotating
wall frequency, fr, for three different amplitudes. The lines are fits to equation (7). The figure
shows that there is very good agreement with the theory.

Equation (8) predicts that the width of the compression curves shown in figure 2 is
proportional to the applied peak-to-peak rotating wall voltage, Vr, which is corroborated by the
measurements, with rotating wall amplitudes between 75 and 600 mV, as can be seen in figure 3.
Using equation (3), it can be shown that Vr = (m/q)a f , with f being a geometrical trap factor.
This factor can be estimated by approximating the electrical potential in the trap using two first
order (in r and z) Taylor expansions to yield a value of ∼61 kHz V−1. The fitted gradient of
134 ± 15 kHz V−1 is clearly higher; moreover, the fitted line has an offset. These discrepancies
with theory can be attributed to the anharmonic nature of the potential well for particles
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δ

Figure 3. Frequency response width versus the applied rotating wall amplitude
with a fitted gradient of 134 ± 15 kHz V−1 and an offset of 26.1 ± 4.5 kHz.
The inset shows that the central frequency of the response curve ( f0 = ω0/2π)

remains more or less constant across this range of amplitudes with a mean
value of 9.4889 ± 0.0030 MHz, which is in excellent agreement with the
calculated value of 9.49 MHz [29]. The uncertainties are derived from the fits
to equations (7) and (8).

with higher energies. Assuming a cloud temperature equivalent of approximately 55 meV,
a numerical evaluation of bounce frequencies followed by a convolution with equation (7)
reproduces an offset consistent with that in figure 3, whereas the shape of the compression
curves does not change significantly. Moreover, assuming that there is a linear relationship
between the rotating wall amplitude and the cloud temperature, the width of the compression
curves increases with increasing amplitude. The larger slope can then be explained by assuming
a temperature increase of 10 meV per applied volt.

Figure 4 shows a linear relationship between the pressure, and therefore the number density,
of cooling molecules for a variety of rotating wall amplitudes. Naively, this is what should be
expected considering the viscous drag model. However, the cooling of the positrons is provided
by the low-energy inelastic scattering with SF6 molecules where the scattering cross-section is
assumed to be strongly energy-dependent near threshold, similar to that of CO2 [43]. Assuming
that the positron temperature is dependent on the pressure, it could be accidental that, as implied
by figure 4, there is a linear relationship between the value of κ and the amount of SF6 present.
For instance, for an amplitude of 75 mV, κ is constant. More research is needed to gain a better
understanding of these data, including the apparent low-pressure offset.

4.3. Accumulation without the rotating wall

The number of accumulated positrons, N (t), after a time, t , can be described by

N (t) = N (∞)(1 − e−t/τ ), (13)
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Figure 5. Some typical accumulation curves for a number of SF6 gas pressures.
The closed symbols represent measurements carried out when the rotating wall
was on, with the open symbols for the rotating wall off. �, 0 mbar; • 10−6 mbar;
H, 5×10−6 mbar; N, 2 × 10−5 mbar.

where τ is the positron lifetime in the trap and N (∞) = Rτ , with R being the rate at which
positrons from the low-energy beam are accumulated. A few examples of accumulation curves
are shown in figure 5, where the open and closed symbols indicate whether the rotating wall is
off or on, respectively, and the lines are fits to equation (13).

The value of τ is determined by annihilation on the N2 buffer gas and the added cooling
gas and, in the absence of the rotating wall, by collision-induced cross-field transport to the
electrode walls via

1

τ
= λT = λN2

ann + λcool
ann + λ

N2
cft + λcool

cft , (14)
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Figure 6. Comparison between CO2 and SF6 as the cooling gas. (a) Loss rate as
a function of nitrogen pressure using CO2 as cooling gas with pressures in units
of 10−5 mbar: �, 0; •, 0.7; N, 1.8; H, 3.6; � , 5.4; , 7.1; the lines are linear fits
to the measured points. (b) The same as (a) but for SF6 with pressures in units
of 10−6 mbar. �, 0; •, 0.4; N, 2.2; H, 3.3; �, 4.3; , 8.7. (c) Annihilation rate for
CO2 (◦) and SF6 (�). The solid line is a linear fit. (d) Loss rate per mbar of N2

derived from panels (a) and (b); symbols are as in (c).

where λT, λann and λcft are the total, annihilation and cross-field transport loss rates, respectively,
and the index cool indicates a cooling gas. The cross-field transport loss rate is known to be
proportional to the neutral gas pressure for non-neutral plasmas [41], assumed here to behave
in a similar fashion in the single-particle regime, and so is the annihilation rate. Therefore,
equation (14) can be written as

λT = C PN2 + D Pcool, (15)

with C and D being constants and PN2 and Pcool the nitrogen and cooling gas pressures,
respectively.

In figures 6(a) and (b), the measured loss rates as a function of nitrogen pressure for a
number of different SF6 and CO2 pressures are shown, where the lines depict linear fits to the
data. The intercepts of the fitted lines for both gases are plotted in figure 6(c). The solid line is a
linear fit, giving a value for D ' 1.7 × 105 s−1 mbar−1. Interestingly, D seems to be independent
of the cooling gas type. Using standard values for the positron annihilation parameter, Zeff [34],
the annihilation rates for SF6 and CO2 are 1.8 × 104 and 9.6 × 103 s−1 mbar−1, respectively,
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line represents the loss rate for 0 mbar without rotating wall applied. (b) Ratio
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pressures.

indicating that cross-field transport is a significant contributor (∼90% for these cooling gases)
to the loss rate. The cross-field loss rate is likely dominated by experimental factors, such
as the trap parameters that determine ωz and the magnetic field strength, which may explain
the lack of sensitivity to the cooling gas type. The fitted value of the offset at zero N2

pressure, 0.135 ± 0.022 s−1, is probably caused by a combination of annihilation and transport
on background gas molecules and asymmetries in the trap electric and/or magnetic fields.

The values of the fitted slopes in figures 6(a) and (b) are plotted in figure 6(d). There is
little variation between the two cooling gases. The resulting value for C ≈ 1.6 × 104 s−1 mbar−1

is represented by the horizontal line in the figure.

4.4. Rotating wall compression during accumulation

Considering the accumulation curves for the rotating wall continuously applied as given in
figure 5, a number of observations can be made. When the rotating wall is applied without
an extra cooling gas the positron lifetime is reduced, so we can conclude that nitrogen alone
cannot cool the positrons efficiently to counteract the increase in temperature caused by the
rotating wall electric field, which presumably results in increased radial transport. Inserting a
cooling gas with the rotating wall off lowers N (∞), which is caused mainly by radial transport
since R is dependent on the value of PN2 (see below) and not Pcool. However, switching on the
rotating wall dramatically increases N (∞) and therefore the lifetime, implying that the loss
rate, λT, is, as was concluded earlier (see also below), mainly due to radial transport and not
positron annihilation. The last point is made clearer in figure 7(a) where the loss rate is plotted
as a function of the nitrogen pressure for a number of SF6 pressures. The line shows the fitted
behaviour with only nitrogen gas present and the rotating wall off.

The data in figure 7(b) represent the ratio of R with rotating wall on and off. It is to be
expected that this ratio is 1; however, the mean value of all measurements gives a value of about
1.3, as shown by the horizontal line in the figure. This is not yet understood, but may be a result
of an increasing transport efficiency of positrons between the first and the second stage of the
trap (see the discussion in [4]) caused by the rotating wall.
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the uncertainty for low values of λT is roughly the size of the points.

The behaviour of the loss rate with rotating wall frequency is shown in figure 8. Close to
the central frequency the loss rate decreases to the expected annihilation rate, implying that the
loss due to radial transport is cancelled by the rotating wall. The width of this low loss rate
region increases with increasing amplitude.

The nitrogen gas pressure of 1 × 10−4 mbar combined with the SF6 pressure of
9 × 10−6 mbar should give a loss rate of about 3 s−1 with the rotating wall off based on the
above measurements. The off-resonance loss rate is about 7 s−1, showing that the rotating wall
affects the loss rate, probably by imparting extra energy to the positron cloud. The combined
annihilation rate is estimated to be 0.7 s−1, which is very close to the minimum value of about
0.75 s−1 at the resonance frequency.

5. Conclusion

We have presented a comprehensive study of the effect of an asymmetric rotating dipole electric
field, applied at a frequency close to that of the axial bounce motion, on a cloud of positrons
in the single-particle regime in a two-stage accumulator. Investigations have been performed
with the rotating wall off, switched on after accumulation is complete and present during
accumulation. We have observed that the rotating wall enhances the lifetime and thus the number
of accumulated positrons when cooling gas is added (SF6 and CO2 were studied). This has been
attributed to the elimination of collision-induced radial transport by the rotating wall, which
acts to compress the positron cloud. Compression rates have been presented that are adequately
described by analytical theory, which models the role of the cooling gas using a Stokes viscous
drag term. Peak compression rates close to 103 s−1 have been found, such that clouds can
be rapidly compressed using this technique for extraction from the trap and for subsequent
applications. The positron cloud radius was found to be limited to just below 2 mm. This was
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attributed to the effects of collision-related expansion, although further studies of the origins of
this limit are warranted.

Acknowledgments

We are grateful to Dr Rod Greaves of First Point Scientific Inc. for communicating the results
of his study prior to publication and for numerous helpful discussions over the years. We thank
the EPSRC for their support of the positron physics and antihydrogen programme at Swansea,
currently via awards EP/E048951/1 and EP/H026932/1 and via studentships to CJB, CAI and
SJK. DPvdW is grateful to RCUK for the provision of a fellowship.

References

[1] Surko C M, Passner A, Leventhal M and Wysoki F J 1988 Phys. Rev. Lett. 61 1831
[2] Murphy T J and Surko C M 1992 Phys. Rev. A 46 5696
[3] Greaves R G and Surko C M 2004 Phys. Plasmas 11 2333
[4] Clarke J, van der Werf D P, Griffiths B, Beddows D C S, Charlton M, Telle H H and Watkeys P R 2006 Rev.

Sci. Instrum. 77 063302
[5] Cassidy D B, Deng S H M, Greaves R G and Mills A P Jr 2006 Rev. Sci. Instrum. 77 073106
[6] Sullivan J P, Jones A, Caradonna P, Makochekanwa C and Buckman S J 2008 Rev. Sci. Instrum. 79 113105
[7] Amoretti M et al (ATHENA Collaboration) 2002 Nature 419 456
[8] Jørgensen L V et al (ATHENA Collaboration) 2005 Phys. Rev. Lett. 95 025002
[9] Gabrielse G et al (ATRAP Collaboration) 2002 Phys. Rev. Lett. 89 213401

[10] Andresen G B et al (ALPHA Collaboration) 2011 Phys. Lett. B 695 95
[11] Andresen G B et al (ALPHA Collaboration) 2010 Nature 468 673
[12] Andresen G B et al (ALPHA Collaboration) 2011 Nature Phys. 7 558
[13] Gabrielse G et al (ATRAP Collaboration) 2012 Phys. Rev. Lett. 108 113002
[14] Cassidy D B, Deng S H M, Greaves R G, Maruo T, Nishiyama N, Snyder J B, Tanaka H K M and Mills A P

Jr 2005 Phys. Rev. Lett. 95 195006
[15] Cassidy D B and Mills A P Jr 2007 Nature 449 195
[16] Dubin D H E and O’Neil T M 1999 Rev. Mod. Phys. 71 87
[17] O’Neil T M 1999 Phys. Today 52 24
[18] Schauer M, Mitchell T and Nebel R (ed) 2003 AIP Conf. Series of Non-Neutral Plasma Physics V (CP692)

(New York: AIP)
Drewsen M, Uggerhøj U and Knudsen H (ed) 2006 AIP Conf. Series of Non-Neutral Plasma Physics VI

(CP862) (New York: AIP)
Danielson J R and Pedersen Th S (ed) 2008 AIP Conf. Series Non-Neutral Plasma Physics VII (CP1114)

(New York: AIP)
[19] Huang X P, Anderegg F, Hollmann E M, Driscoll C F and O’Neil T M 1997 Phys. Rev. Lett. 78 875
[20] Anderegg F, Hollmann E M and Driscoll C F 1998 Phys. Rev. Lett. 81 4875
[21] Greaves R G and Surko C M 2000 Phys. Rev. Lett. 85 1883
[22] Danielson J R and Surko C M 2005 Phys. Rev. Lett. 94 035001
[23] Danielson J R, Surko C M and O’Neil T M 2007 Phys. Rev. Lett. 99 135005
[24] Danielson J R and Surko C M 2006 Phys. Plasmas 13 055706
[25] Watson T L 1999 Accumulation and manipulation of positron plasmas for antihydrogen production

PhD Thesis University of Wales, Swansea
[26] Greaves R G and Moxom J 2008 Phys. Plasmas 15 072304

New Journal of Physics 14 (2012) 075022 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.61.1831
http://dx.doi.org/10.1103/PhysRevA.46.5696
http://dx.doi.org/10.1063/1.1651487
http://dx.doi.org/10.1063/1.2206561
http://dx.doi.org/10.1063/1.2221509
http://dx.doi.org/10.1063/1.3030774
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/10.1103/PhysRevLett.95.025002
http://dx.doi.org/10.1103/PhysRevLett.89.213401
http://dx.doi.org/10.1016/j.physletb.2010.11.004
http://dx.doi.org/10.1038/nature09610
http://dx.doi.org/10.1038/nphys2025
http://dx.doi.org/10.1103/PhysRevLett.108.113002
http://dx.doi.org/10.1103/PhysRevLett.95.195006
http://dx.doi.org/10.1038/nature06094
http://dx.doi.org/10.1103/RevModPhys.71.87
http://dx.doi.org/10.1063/1.882521
http://dx.doi.org/10.1103/PhysRevLett.78.875
http://dx.doi.org/10.1103/PhysRevLett.81.4875
http://dx.doi.org/10.1103/PhysRevLett.85.1883
http://dx.doi.org/10.1103/PhysRevLett.94.035001
http://dx.doi.org/10.1103/PhysRevLett.99.135005
http://dx.doi.org/10.1063/1.2179410
http://dx.doi.org/10.1063/1.2956335
http://www.njp.org/


14

[27] Sullivan J P, Makochekanwa C, Jones A, Caradonna P and Buckman S J 2008 J. Phys. B: At. Mol. Opt. Phys.
41 081001

[28] Weber T R, Danielson J R and Surko C M 2008 Phys. Plasmas 15 012106
[29] Isaac C A, Baker C J, Mortensen T, van der Werf D P and Charlton M 2011 Phys. Rev. Lett. 107 033201
[30] Brown L S and Gabrielse G 1986 Rev. Mod. Phys. 58 233
[31] Watkeys P R 2008 Towards laser excitation of positronium and advances in positron accumulation techniques

PhD Thesis University of Wales, Swansea
[32] Isaac C A 2011 Axialisation of particles in a Penning-type trap by the application of a rotating dipole electric

field and its application to positron accumulation PhD Thesis University of Wales, Swansea
[33] Marler J P and Surko C M 2005 Phys. Rev. A 72 062713
[34] Charlton M and Humberston J W 2001 Positron Physics (Cambridge: Cambridge University Press)
[35] Schrader D M and Svetic R E 1982 Can. J. Phys. 60 517
[36] Charlton M 1985 Rep. Prog. Phys. 48 737
[37] Griffith T C and Heyland G R 1978 Phys. Rep. 39 169
[38] Paul D A L and Leung C Y 1968 Can. J. Phys. 46 2779
[39] Coleman P G, Griffith T C and Heyland G R 1981 J. Phys. B: At. Mol. Opt. Phys. 14 2509
[40] Al-Qaradawi I, Charlton M, Borozan I and Whitehead R 2000 J. Phys. B: At. Mol. Opt. Phys. 33 272
[41] Malmberg J H and Driscoll C F 1980 Phys. Rev. Lett. 44 654
[42] Notte J and Fajans J 1994 Phys. Plasmas 1 1123
[43] Surko C M, Gribakin G F and Buckman S J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R57

New Journal of Physics 14 (2012) 075022 (http://www.njp.org/)

http://dx.doi.org/10.1088/0953-4075/41/8/081001
http://dx.doi.org/10.1063/1.2817967
http://dx.doi.org/10.1103/PhysRevLett.107.033201
http://dx.doi.org/10.1103/RevModPhys.58.233
http://dx.doi.org/10.1103/PhysRevA.72.062713
http://dx.doi.org/10.1139/p82-069
http://dx.doi.org/10.1088/0034-4885/48/6/001
http://dx.doi.org/10.1016/0370-1573(78)90127-8
http://dx.doi.org/10.1139/p68-648
http://dx.doi.org/10.1088/0022-3700/14/14/021
http://dx.doi.org/10.1088/0953-4075/33/14/309
http://dx.doi.org/10.1103/PhysRevLett.44.654
http://dx.doi.org/10.1063/1.870762
http://dx.doi.org/10.1088/0953-4075/38/6/R01
http://www.njp.org/

	1. Introduction
	2. Theory
	3. Experimental details
	4. Results and discussion
	4.1. Commentary
	4.2. Rotating wall compression after accumulation
	4.3. Accumulation without the rotating wall
	4.4. Rotating wall compression during accumulation

	5. Conclusion
	Acknowledgments
	References

