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Abstract

An experimental and theoretical study of the behaviour of particles in a 2-stage
buffer gas accumulator has been undertaken. A mathematical model has been
developed for the axialisation of a particle in a Penning-type trap via the asym-
metric application of a rotating dipole electric field in the presence of a cooling
mechanism which conforms to a Stokes’ viscous drag form. This model has been
compared with experimental results obtained using a 4-segment electrode in-
stalled in a 2-stage N2 buffer gas positron accumulator with the addition of SF6

cooling gas.
It was found that the application of the rotating wall electric field during the

accumulation stage decreases the loss rate to a value consistent with the positron
annihilation rate on the cooling gas, giving a 7-fold increase in the potential
storage capability of the Swansea accumulator.
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Chapter 1

Introduction

“A new scientific truth does not triumph by convincing its opponents and making
them see the light, but rather because its opponents eventually die and a new
generation grows up that is familiar with it”

— Max Plank (1948)

Although speculations regarding the existence of an antimatter had existed

previously, it was not until the unification of special relativity and quantum me-

chanics that it was realized that antimatter was a real entity. This subject has

been in existence for around 90 years and yet it still holds a number of mysteries

waiting to be solved. A great effort has been devoted to controlling antimatter;

from humble beginings with the positron, e+, to the now, more exotic positron-

ium, Ps, antiproton, p̄, and more recently antihydrogen, H̄. Modern antimatter

related experiments can manipulate antiparticles using various techniques such

as moderation, accumulation, rotating wall compression, bright beam formation

and high field effects such as cyclotron cooling.

The studies presented in this thesis are concerned with just two of these:

accumulation and rotating wall compression. Using these it will be shown that

an increased yield of positrons in smaller clouds can be achieved with modest

1
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modifications to existing accumulators. To begin, an introduction is given into

the history of antimatter physics along with some details on the recent and current

interests of the Swansea positron group which have led to these studies, followed

by an outline of the contents of this thesis.

1.1 Historical Background and Introductory Re-

marks

1.1.1 The antiworld

In Arthur Schuster’s letter “Potential Matter – A Holiday Dream” [1] he postu-

lates the existence of an antimatter as a source of antigravity. In this flight of

fancy he predicts that his antiatoms would gravitationally repel matter and yet

be indistinguishable from it. Despite this being accredited as the first time the

idea of antimatter had ever been conceived, the gravitational interaction between

matter and antimatter has yet to be measured. Although experiments to deter-

mine this are a little way off yet, inroads have been made into studying other

differences and similarities between matter and antimatter.

The first prediction of the existence of antimatter came from Paul Dirac in

1931. While attempting to make a relativistic formulation of quantum mechanics

he found negative solutions for the energy values for an electron [2]. In quantum

mechanics such solutions cannot be neglected as unphysical and so he considered

a sea of possible energy states, both positive and negative. The negative energy

states would normally be occupied so that, by the Pauli exclusion principle, an

ordinary electron of positive energy would be unable to fall into them.

Under normal circumstance the negative energy states would be unobserv-

able, however Dirac questioned how one of these energy states would manifest

itself were it to be unoccupied? He showed that such a hole would appear as a

positive particle which he initially believed to account for the existence of the

proton. A number of eminent physicists of the time pointed out that if that were

the case then a proton would annihilate with an electron and atoms would self

annihilate. Dirac conceded that his holes would be a new, as yet unobserved,
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particle which he termed the antielectron. Among his predictions for the proper-

ties of the antielectron were its stability in vacuum and a possible mechanism by

which experimentalists could produce such a particle. He also concluded that the

proton should also have these negative energy states and so antiprotons should

also exist.

A little over two years later Carl Anderson published his paper entitled “The

Positive Electron” in which he presented photographs showing cosmic ray tracks

in a vertical Wilson chamber [3]. In some 1300 of the photographs he examined,

he observed 15 tracks produced by a positive particle with a track length and

curvature which was inconsistent with that of a proton, the only known positive

particle at the time. Anderson was able to place experimental limits on the

mass and charge of his newly discovered particles which suggested that they were

of a comparable charge and mass to that of the electron. He gave his positive

electrons the name positron and, by extension, he used the term negatron to

refer to a free electron∗. Later in 1933, Blackett and Occhialini realised that

Anderson’s positrons and Dirac’s antielectrons were one and the same [4].

Stjepan Mohorovičić is credited with the prediction of the existence of the

bound state of an electron and a positron. His 1934 paper was the first to show

that the binding energy of a positron to an electron is half that of the binding

energy of hydrogen [5]. The remainder of the work in this paper is a mis-guided

attempt to use positrons and electrons to build a new table of elements, the

first three of which he named electrum (Ec), nobelium (Nb) and slavium (Sl).

Mohorovičić derived predicted emission spectra for these elements and tried to

use them as an explanation for unidentified spectral lines in the emission spectra

of some stars. It was not until 1945 that Arthur Ruark published a paper in

which he put forward the now accepted name of positronium† [6]. By looking at

the distribution of lifetimes of positrons in gas mixtures Martin Deutsch was able

to provide the first definitive proof for the abundant formation of positronium [7].

In 1955 Chamberlain et al. were the first to observe the antiproton in an

experiment [8]. They produced antiprotons by colliding high energy protons,

accelerated by the Bevatron synchrotron, into a copper target with energies above

∗The term ‘negatron’ was never adopted by the wider scientific community
†Positronium may be identified with Mohoroviĉić’s first isotope of electrum
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4.3 GeV‡. Although this provided the final ingredient for the production of atomic

antimatter, it was many of years before this goal was realised.

In 1996 CERN announced that the PS210 collaboration had successfully pro-

duced 11 antihydrogen atoms by colliding high energy antiprotons into a Xenon

target [9]. The antiprotons collided with the Xenon nuclei with sufficient energy

to create a positron–electron pair and, on occasion, the antiproton would capture

the positron forming antihydrogen. This result was called into doubt when, in

1998, Blanford et al. reported the production of antihydrogen at the Fermilab an-

tiproton accumulator [10]. The formation mechanism was identical to the PS210

experiment but the target was replaced with a hydrogen gas jet. They found a

formation cross section of 1.12±0.14 pb which was consistent with the prediction

of Bertulani and Baur [11]. The same calculation gives a prediction for the PS210

experiment of 671 pb while their experiment, if correct, gave a cross section of at

least 6000 pb.

The H̄ produced using high energy antiproton beams was not suited to spectro-

scopic studies due to its high momentum and sparseness. In 2002 the ATHENA

collaboration at CERN reported the production of 20,000 cold§ antihydrogen

atoms [12]. By forming a positron plasma and an antiproton cloud, they produced

antihydrogen via the mixing of the two species in a so-called nested Penning trap,

as illustrated in figure 1.1.

Cold antihydrogen antiatoms produced in this manner have the potential to

be used for spectroscopic studies. The standard model of particle physics is

underpinned by CPT symmetry; the laws of physics should be invariant under

the simultaneous inversion of charge (C), parity (P) and time (T). In essence this

means that matter and antimatter should be indistinguishable with the exception

of mutual annihilation. Spectroscopic measurements of the 1S–2S transition of

antihydrogen have the potential to offer the most precise test of CPT symmetry

to date, however, prior to this antihydrogen must be trapped in a neutral atom

trap. Lasers capable of cooling and trapping antihydrogen are not yet available

and so magnetic traps are being developed. In a magnetic field gradient the

‡In older documentation the unit of energy GeV would be written as BeV (Billions of
electron volts)

§The term cold, in this respect, refers to a low energy and momentum.
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magnetic moment of an atom may align itself with the field; such atoms will tend

toward regions of higher magnetic field and are thus called high-field seekers. If

the magnetic moment of the atom is aligned opposite to the field it will tend

toward regions of lower magnetic field and is therefore called a low-field seeker.

As it is not possible to produce a magnetic maximum in free space, it is only

possible to magnetically confine low-field seekers in all 3 spatial dimensions. For

a magnetic trap with a well depth ∆B, only atoms with a kinetic energy less

than µB∆B, where in the case of ground state (anti)hydrogen µB is the Bohr

magneton, will be trapped. Thus only ground state antihydrogen with a kinetic

energy corresponding to a temperature of 0.67 KT−1 or lower has the potential to

be trapped. One of the aims of the ALPHA [13] and ATRAP [14] collaborations,

located at the antiproton Decelerator (AD) at CERN, is to first trap antihydrogen

and subsequently to perform spectroscopic measurements of the energy levels.

Figure 1.1: The mixing scheme used by the ATHENA collaboration. The trap-
ping potential is plotted against length along the trap. The dashed
line is the potential immediately before antiproton transfer. The solid
line is the potential during mixing. This figure originally appeared
in [12].

1.1.2 Manipulation of charged particle clouds

Inspired by the geometry of F.C. Penning’s vacuum gauges, H.G. Dehmelt de-

signed a trap capable of storing charged particles which he named the Penning
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trap [15]. In short, a Penning trap is a cylindrically symmetric trap which con-

fines charged particles axially using a static electric field, and radially using a

static magnetic field. In the radial plane the motion of such a trapped particle

is described by the superposition of a fast circular motion which usually has a

small radius, the cyclotron motion, and a slower circular motion with a larger

radius, the magnetron motion. In the axial direction of the trap the particle

exhibits simple harmonic motion termed an axial bounce motion. As the theory

presented in chapter 3 will show, a particle in an ideal Penning trap may be con-

fined indefinitely, however in reality small misalignments and imperfections of the

electric and magnetic fields, as well as the vacuum quality, limit the confinement

time. A number of methods have been developed to overcome these limitations,

some of which are detailed here.

The cyclotron and axial motions of a particle in a Penning trap are relatively

easy to damp, either by the use of a cooling gas or by cyclotron radiation in a

strong magnetic field; the magnetron motion, on the other hand, is quasi-stable.

In fact, as explained in section 3.1, the removal of energy from the magnetron

motion actually increases the magnetron radius. Dehmelt showed that the nor-

mally decoupled motions of a charged particle in a trap become coupled by the

use of superimposed fields at specific frequencies [16], for example, the radial ex-

pansion can be counteracted by the application of a field at the combined sum of

the magnetron frequency and the axial bounce frequency [17]. Such a field will

increase both the energy of the magnetron motion, and the energy of the axial

bounce. It is therefore necessary to use one of the aforementioned methods to

damp the axial motion.

If a sufficiently cold and dense cloud of charged particles is contained in a

trap it is termed a non-neutral plasma. A plasma is defined as a many-body

collection of charged particles which display a collective behaviour; that is, the

interaction between the individual particles cannot be neglected. In the case of

a conventional or neutral plasma such as an ionised gas, there is overall charge

neutrality. On short length scales however, the ions and electrons may have a

distribution such as to cause significant self-generated electric and magnetic fields

and therefore exhibit collective behaviour. This allows for phenomenon such as

plasma waves and instabilities. Collective behaviour is displayed in a plasma over
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a length scale characterised by the Debye length, λD, which is given by

λD =

√
ε0kBT

ne2
, (1.1)

where T and n are the thermodynamic temperature and charge density of the

plasma respectively. If a test charge were to be placed into a plasma, it is the

Debye length which describes the characteristic distance over which the charge

would be screened or shielded from the remainder of the plasma. For a collection

of charged particles to display collective behaviour the dimensions of the cloud

must be several Debye lengths.

When in a magnetic field, the self-generated electric field of a plasma will

cause it to rotate as a result of a so-called E×B drift. In the zero temperature

limit, a low density plasma in a magnetic field, B, will rotate as a rigid body at

a frequency given by

fr =
ne

2πε0B
(1.2)

where n is the plasma density. In theory a non-neutral plasma in a penning

trap will be confined indefinitely due to the conservation of angular momentum

in a cylindrically symmetric trap [18], however analogous to the case of a single

charged particle in a Penning trap, this is not in practice the case.

The compression of a non-neutral plasma was first demonstrated by the Driscoll

group using magnesium ions [19] and, shortly after, using electrons [20]. In both

experiments a split ring electrode was used to apply a “rotating wall” electric

field asymmetrically over the plasma, achieving compression to densities in ex-

cess of 109 cm−3. They observed that the compression rate exhibited peaks when

the rotating wall frequency coincided with the Trivelpiece-Gould plasma modes¶.

Although this method is effective in compressing non-neutral plasmas, it has the

undesirable effect of heating the plasma. Greaves and Surko found that they were

able to counteract this effect by the addition of a suitable cooling gas such as SF6,

CF4 or CO2 [22].

Using large amplitude rotating wall electric fields, coupled with a source of

cooling, Danielson and Surko found that they were able to compress plasmas to

¶The Trivelpiece-Gould modes are space charge waves present in finite length plasmas [21].
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densities in excess of 1010 cm−2, not only at the specific frequencies previously

observed, but over a whole range of frequencies. In this strong drive regime the

plasma density would tend to a value such that the natural rotation frequency

of the plasma, as given by equation 1.2, would equal the applied rotating wall

frequency. Using this method Danielson and Surko were able to control their

plasma densities simply by setting their rotating wall frequency [23].

Recently, Greaves and Moxom have published a paper entitled “Compression

of trapped positrons in a single particle regime by a rotating electric field” [24]. In

the experiment a cloud of charged particles was radially compressed in a Penning-

type trap by the application of a rotating quadrupole electric field. Prior to this

publication, only clouds of charged particles which qualified as plasmas had been

compressed using this method. By applying the rotating wall asymmetrically

over a cloud of positrons, compression was observed across a range of frequencies

near the bounce frequency of the trap. As can be seen in Figure 1.2, at low

rotating wall amplitudes compression occured over a narrow range of frequencies,

while higher amplitudes resulted in compression occuring over a broad range of

frequencies, extending below the bounce frequency of the trap. No compression

was reported at frequencies above the bounce frequency. The authors suggested

that the effects they observed may be explained in terms of the already understood

effect of bounce resonance transport [25], however this theory is built on plasma

equations and has not been developed for the single particle limit.

The studies presented in this thesis are of a similar nature to those performed

by Greaves and Moxom, however using a rotating dipole electric field. Some

preliminary results have been presented elsewhere [26, 27] however they repre-

sented a convoluted measurement in which the electric field was applied during

the cloud formation (accumulation) stage. The current studies comprise a more

direct measurement in which a true compression rate is measured and compared

with a mathematical model of the compression mechanism.
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Figure 1.2: The frequency dependence of the central density as a function of ap-
plied rotating wall frequency for various amplitudes, φa, as measured
by Greaves and Moxom [24].
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1.2 Research Interests of the Swansea Positron

Group

A major goal of the Swansea positron group is to investigate methods to produce

positronium and study the Rydberg states to aid the ALPHA collaboration. An

atom is considered to be in a Rydberg state if it has a high principal quantum

number, n. Such atoms are particularly interesting because they have a number of

novel properties, some of which are listed in table 1.1. It is believed that a highly

efficient way to produce antihydrogen is via the charge exchange collision between

an antiproton and positronium in a Rydberg state resulting in the creation of an

antihydrogen atom and a surplus electron [28] as

p̄ + Ps∗ −→ H̄∗ + e−. (1.3)

The cross section for this reaction scales as the orbital radius square, which from

table 1.1, gives a n4 dependence. In addition to this, the radiative lifetime of

the positronium in the Rydberg states goes as n3 and thus will offer a longer

time-scale for the reaction to occur.

Table 1.1: A selection of properties of Rydberg atoms [29].

Property n dependence
Binding energy n−2

Energy between adjacent n states n−3

Orbital radius n2

Geometric cross section n4

Dipole moment n2

Polarizablility n7

Radiative lifetime n3

Fine-structure interval n−3

1.2.1 Laser-Ps Studies

A tunable Ti:Sapp laser will be used to excite the positronium from the 1S to the

2P state using a wavelength of approximately 243 nm. While in the 2P state a sec-
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ond laser will excite the positronium into one of the Rydberg states. Subsequently

a third photon will then ionise the positronium and, using a small charged par-

ticle trap, the ionisation products may be captured and subsequently measured,

providing direct evidence of the formation of the excited state positronium [26].

The system of lasers are detailed further in [30]; however of key importance is

the 10 Hz repetition rate of the laser system. The Swansea two-stage accumu-

lator, described in section 2.2, was designed to operate optimally at a matching

repetition rate.

1.2.2 High Magnetic Field Studies

In 2000 Estrada et al. found that bombarding a gas covered surface with positrons

in a high magnetic field (> 5 T) produced a fraction of positronium in Rydberg

states with an efficiency of around 2×10−3 [31]. As well as the possible use of

this positronium for antihydrogen formation, it offers a possible UHV compatible

method of accumulating positrons. The weakly bound Rydberg states are field

ionised by modest electric fields and the resultant ionisation products, namely

the positrons, may be trapped in potential wells.

Studies into this effect have been performed on the Swansea positron beam-

line and have been reported in detail elsewhere [27, 32]. A number of candidate

gases were studies and various magnetic fields. The highest measured Rydberg

positronium yield was around 5×10−6 per incident positron. This result was more

akin to the result obtained by Jelenković et al., whom observed an efficiency of

6×10−6[33], than Estrada’s value.

1.2.3 Production of Cold Positrons

The quantity and final temperature of antihydrogen produced by the mixing

method is dependent on the temperatures of the antiproton and positron clouds [34].

Using their current apparatus ALPHA estimated that they have a magnetic

trap depth of 0.78 K for antihydrogen in its ground state [13] and so control

of the quantum state and temperature of the antihydrogen is critical. Currently,

positrons are cooled to ambient temperature either by cyclotron cooling in high

magnetic fields or by collisions on a suitable buffer gas.
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A method to produce extremely cold positron clouds, in the mK regime, is

being investigated at Swansea. Positrons will be mixed with magnesium ions in

a high (5 T) magnetic field. Positrons cool rapidly in high magnetic fields via

cyclotron radiation and will, in turn, sympathetically cool the magnesium ions.

The ions will then be cooled using laser cooling as has already been demonstrated

by others [35]. The laser cooled magnesium ions will then sympathetically cool

the positrons. Jelenković et al. have already demonstrated this principle by

producing a positron cloud consisting of 103 positrons cooled by laser cooled

beryllium ions [33].

1.2.4 Positron and Electron Plasma Mixing

The dynamics of positron–electron mixing is markedly different from the electron-

ion case as the former is an example of an equal mass system. One of the interests

of the Swansea group is to investigate such a system, primarily as a method of

positronium production. Overlap of a positron plasma and an electron plasma is

not possible using a nested Penning trap and so initially only one of the species

will be in the plasma regime. An electron plasma will be formed in a cylindri-

cal Penning trap in a high (5 T) magnetic field and a positron cloud will be

transferred from the two-stage accumulator and re-trapped in the vicinity of the

electron cloud. Recombination processes will be studied by mixing the two species

in a manner similar to the method ATHENA used to produce antihydrogen, il-

lustrated in figure 1.1. The amount of positronium formed will be determined

either through annihilation, by monitoring gamma-ray emission using external

detectors, or via field-ionisation in a suitable traps. It can be envisaged that in

the future attempts will be made to simultaneously trap both positrons and elec-

trons in the same spatial region creating a neutralised positron–electron plasma,

but this will require the development of a new trap.

1.3 Thesis Outline

The second chapter begins with an outline of the apparatus and some operational

procedures. A new control system which has been developed as part of these
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studies is also outlined. In concluding, a novel technique for determining the

width of a cloud of charged particles is presented. The third chapter introduces

some theoretical aspects relevant to these studies including the confinement of a

charged particle in a Penning-type trap. The operation of a two-stage buffer gas

accumulator is discussed and some of the characteristic parameters are presented.

The fourth chapter constitutes the bulk of the new work presented in this

thesis. A theoretical model for a particle in a Penning-type trap with the asym-

metric application of a rotating dipole electric field is developed and compared

with experimental results taken using the Swansea two-stage positron accumula-

tor. In the fifth chapter the effect of the application of the rotating wall electric

field during accumulation is investigated. The final chapter summarises the con-

clusions which may be drawn from these studies and suggests future work to be

carried out.



Chapter 2

Apparatus and Methods

“Re Specialists: Everyone is becoming better and better at less and less, and
eventually someone is going to be superb at nothing”

— Kenneth Williams (1987)

This chapter outlines the important features of the Swansea positron beam-

line, along with some of the operational procedures. Section 2.1 gives an overview

of the system and positron source. Section 2.2 provides a physical description of

the accumulator and the control systems used for its operation; this is comple-

mentary to the theoretical description of the operation of the accumulator which

is presented in section 3.2.

A description of the control system developed for these studies is presented

in section 2.3. The sequencer software controls timing, digital output and ana-

logue output as well as the acquisition of signal traces (digitisation). The final

section in this chapter (section 2.4) describes the methods used to characterise

the radial extent of the positron clouds. This includes a phosphor screen and

a novel method which takes advantage of the fact that a non-interacting cloud

of particles in a Penning trap has a Gaussian profile in the radial plane (proved

later, in section 3.1).

14
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2.1 System Overview

Further technical details about the Swansea positron beam-line may be found

in [36, 26, 27]. Figure 2.1 shows a schematic of the parts of the Swansea positron

beamline relevant to these studies.

2.1.1 Positron Source and Moderation

Sodium-22 emits β+ particles with a branching ratio of around 90 %∗ with a half-

life of 2.6 years: a convenient lifetime for beam-line applications. The simplified

β+ decay channel of 22Na is

22Na → 22Ne∗ + e+ + νe (2.1a)

22Ne∗ → 22Ne+ γ(1.274 MeV ). (2.1b)

The β+ particles emitted from 22Na have a broad energy spread from 0 eV up to

544 keV. However a large number of applications require positrons with a narrow

energy distribution. In addition to this, only a small fraction of the emitted

positrons possess energies which may be manipulated using the modest electric

and magnetic fields (V. 2 kV, B. 1 T) available in many laboratories. The

technique of positron moderation may be adopted to improve this situation.

The first successful positron moderation was reported in 1958 by W. H. Cherry.

During a study of secondary electron emission by positrons he found an anoma-

lously high number of positrons with an energy in the range 0–5 eV when β+

particles, emitted from a 64Cu source, bombarded a chromium-on-mica surface.

His results represented a moderation efficiency† of 10−8; extremely small by to-

day’s standards. Had Cherry published his results in a widely read journal this

may have generated a large interest, however he only presented his results in his

thesis and thus they were relatively unknown at the time.

Although some progress was made, positron moderation received an increased

interest when, in 1968, Canter et al. reported a moderation efficiency of 3×10−5 [37].

∗The remaining 10 % of the branching ratio is electron capture.
†The moderation efficiency is defined in this case as the ratio of the number of emitted low

energy positron to the number of incident β+.
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The moderator system they used was produced by burning magnesium ribbon in

air and collecting the resultant oxide on gold. In the intervening years a number

of different materials were found to have increasing positron moderation efficien-

cies, culminating in 1983 when Vehanen et al. pioneered the use of what has now

become the most commonly used metal moderator, tungsten, with their original

publication boasting an efficiency of (3.2±0.4)×10−3 [38]. The majority of the

early moderators were materials with surfaces which have a negative positron

work function. In a simplistic view the positrons entering such moderators lose

energy via inelastic collisions until they are thermal. Provided they are not lost

via annihilation, the positrons then diffuse through the material to the surface

where the negative positron work function may cause them to be ejected from

the material.

It might be expected that a material with a positive positron work function

would show no such emission however this is not, necessarily, the case. The

rare gas solids (RGS) are wide band-gap insulators which have positive positron

work functions. Positrons implanted into such materials with a kinetic energy of

several keV lose energy via inelastic collisions involving electronic excitation and

ionisation. In such an insulator once the positron energy is too low it is unable to

lose further energy by electron–hole, exciton or positronium production and so can

only loose energy by creating relatively low energy phonons (Ephonon . 5.4 meV

for neon). As the positron does not thermalise it has a large diffusion length and

so can reach the surface with sufficient energy to overcome the work function

and escape [39]. To date, the most efficient positron moderator found is solid

neon [40] with efficiencies of a few percent. It was found by Lynn et al. [41] that

positron moderation was improved by the use of a conically shaped moderator, a

fact which was verified for the RGS moderators by Khatri et al. [42].

Figure 2.2 shows the source assembly used in the Swansea beam-line. It

is thermally connected to a cold-head (SHI Cryogenics RDK-408L2) capable of

temperatures as low as 4.2 K but is kept electrically isolated by a sapphire disc and

PEEK isolators. The pressure in the source chamber is increased to 2×10−3 mbar

as neon is admitted into the chamber by the use of a piezoelectric valve connected

to a PID feedback control circuit. Over the course of approximately 30 minutes

a layer of neon is grown onto the source assembly. During growth the positron
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count rate is measured using a CsI counter unit which detects the radiation

as the positrons annihilate on the (closed) valve located immediately after the

first solenoid (See figure 2.1). A typical moderator growth curve is shown in

figure 2.3. The measured count rate is suppressed by scattering and annihilation

on the uncondensed neon gas during growth and so as the gas is removed and the

chamber returns to a base pressure of around 1× 10−9 mbar, a jump is observed

in the count rate which then slowly increases as the moderator stabilises.

Figure 2.2: The source assembly used on the Swansea positron beam-line. The
sapphire disc which electrically isolates the source capsule and cone
is shown in blue.

The source and cone are held at an electric potential of 50 V, thus accelerating

the moderated positrons. The 30 mT magnetic fields produced by the pancake

coils (detailed in section 2.1.2.1) are unable to steer the high energy positrons

across a step in the beam-line (see figure 2.1) and thus they do not form part

of the main beam. A measurement of the kinetic energy distribution of the low

energy positrons is shown in figure 2.4. This was taken by applying varying

blocking potentials on the accumulator electrodes (see figure 2.5) and measuring

the resultant number of positrons annihilating on the plate in the annihilation

plate cross. The negated derivative of this measurement gives the energy profile

of the beam.
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Figure 2.3: A typical moderator growth curve. The neon gas was admitted into
the chamber, raising the pressure to 3×10−3 mbar, for approximately
30 minutes. Subsequently, there is a sudden increase in positron yield
due to decreased attenuation as the gas is pumped out giving a final
count rate of 5×106 slow e+ s−1.
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Figure 2.4: A measurement of the moderated positron beam energy distribution.
The left figure gives the complementary cumulative distribution func-
tion (CCDF) for the distribution of the low energy positrons. The
right figure is the negated derivative of the CCDF giving the energy
distribution of the particles in the low energy beam. The solid line is
a smoothed line to guide the eye.
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2.1.2 Magnetic Fields

The beam is confined radially using a series of coils and solenoids placed at

strategic positions along the beam-line. On occasion, small corrections to the

beam steering are made by adjusting the positions and angles of the coils.

2.1.2.1 Pancake Coils

A pancake coil, consisting of a spirally wound wire, may be seen as a stack of

current loops of increasing radius. From Ampere’s law the magnetic field strength

at the centre of a pancake coil can be approximated by

|B| = I

N∑
m=0

µ0

2 (r0 +mrδ)
, (2.2)

where I is the current through the pancake coil, r0 is the inner radius of the coil,

rδ is the thickness of each layer and N is the number of layers in the stack.

The pancake coils on the Swansea positron beam-line consist of two such coils

sandwiched together with r0 = 76 mm, rδ = 2 mm and N = 80 giving a magnetic

field strength at the centre of 0.722 mT A−1. Given that the coils are usually

used with a current of 40 A results in a magnetic field strength at the centre of

28.9 mT.

2.1.2.2 Steering Coils

The steering coils are made using 5 mm diameter wire. Using an average of the

radius of the coils, Ampere’s law gives the magnetic field strength in the centre

of such a collection of current loops as

|B| = IN
µ0

rin + rout

, (2.3)

where I is the current through the coil, rin is the inner radius of the coil, rout is

the outer radius of the coil and N is the number of loops in the coil.

The steering coils on this system have an inner and outer radius of 258 mm

and 300 mm respectively, and consist of 400 loops. This gives a magnetic field
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strength at the centre of 0.9 mT A−1. Given that the coils are usually used with

a current of 7 A, this provides a magnetic field strength at the centre of 6.3 mT.

2.1.2.3 Solenoids

There are two solenoids on the beam-line which have been directly wound onto

the vacuum tubes. By Ampere’s law the magnetic field strength is approximately

uniform within the solenoid and given by

|B| = INµ0
NL

L
, (2.4)

where I is the current through the solenoid, L , NL and N are the length, total

number of turns per layer and number of layers on the solenoid respectively.

For the first solenoid on this system (solenoid 1 in figure 2.1) L = 890 mm,

NL = 220 turns per layer and N = 4. This gives a magnetic field strength of

1.254 mT A−1. Given that the solenoid is usually energised with a current of

20 A, a magnetic field strength at the centre of 25.1 mT is obtained.

The second solenoid on this system (solenoid 2 in figure 2.1) was wound such

that L = 680 mm, NL = 170 turns per layer and N = 4. This gives a magnetic

field strength of 1.257 mT A−1. Given that the solenoid is usually used with a

current of 40 A, the magnetic field strength at the centre is 50.3 mT.

2.1.3 The Vacuum System

A summary of the pump types and base pressures of the various pumping crosses

relevant to these studies is shown in table 2.1. The source chamber has a base

pressure of 10−9 mbar when pumped using a water cooled turbo-molecular pump

(Pfeiffer TMU-520 500 ls−1 N2) backed out by a scroll pump (Edwards XDS210).

The pressure is measured using a cold-cathode ion gauge calibrated for N2 con-

nected via a PID control circuit to a Piezoelectric valve for moderator growth

(detailed in section 2.1.1). The narrow pumping restriction, immediately after

the source chamber, minimises the amount of nitrogen travelling from the accu-

mulator and condensing onto the source.

The pre-accumulator cross has another turbo-molecular pump (Leybold 340M



CHAPTER 2. APPARATUS AND METHODS 22

400 ls−1 N2). The typical base pressure in this cross is 10−8 mbar as measured

with a cold-cathode ion gauge. It is the pressure on this gauge which is usually

quoted as the accumulator buffer gas pressure however as shown in [26] due to

the manner in which the nitrogen is allowed into the accumulator, the pressure

in the first stage is typically two orders of magnitude higher.

The annihilation plate cross is pumped by a cryo-pump (SHI-APD6 800 ls−1

N2). It has a typical base pressure of 10−8 mbar as measured with a cold-cathode

ion gauge. It is the pressure as measured here which is usually quoted as the cool-

ing gas pressure as the accumulator cooling gas is administered directly into the

cross. The phosphor screen cross is pumped by an oil-free magnetically levitated

turbo-molecular pump (Leybold 340M 400 ls−1 N2) backed out by a scroll pump

(Edwards XDS210). The pressure in this cross never exceeds 10−6 mbar since

damage may be caused to the phosphor screen due to the high voltage applied to

it.

Table 2.1: Vacuum specifications in the system.

Section Pump Type Base Pressure [mbar]

Source Turbo 10−9

Pre-accumulator Cross Turbo 10−8

Plate Cross Cryo 10−8

Phosphor Screen Cross Turbo 10−8

2.2 Accumulator

The Swansea two-stage accumulator consists of two different diameter cylindrical

Penning traps. The first stage is comprised of 15 electrodes of length 24 mm with

inside diameter 10 mm. The second stage has 5 larger electrodes of length 50 mm

with inside diameter 41 mm. These are kept electrically isolated by the use of

sapphire balls (diameter 2 mm) which fit into indents in the electrodes.

For normal operation the accumulator requires 8 different operating potentials

as shown in figure 2.5. The remaining small electrode potentials are provided by

a series potential divider to give successively lower voltages ranging from ‘grad

high’ to ‘grad low’ in equal divisions. A PID feedback control circuit maintains
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Figure 2.5: The accumulator assembly and electrical connections required for
normal accumulator operation. E0, Grad High and Grad Low are
the electrical connections required for the high pressure region (first
stage) and E1-E5 are the electrical connections for the lower pres-
sure region (second stage). Nitrogen buffer gas is admitted into the
accumulator via a small hole in the centre electrode of the first stage.
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a constant nitrogen pressure (as measured on a capacitance pressure gauge) at

one end of a long narrow tube which admits the nitrogen into the first stage of

the accumulator via a small hole in the central electrode. The actual pressures

in the accumulator may be determined from the pumping speeds and restrictions

as detailed in [26].

To facilitate the studies presented in this thesis a so-called rotating wall elec-

trode has been installed (shown in an exploded view in figure 2.6). Electrode 4,

E4, consists of two halves; it is one of these halves which has been split into four

quadrants forming a rotating wall electrode. Sinusoidally varying voltages are

applied in quadrature to each of the segments to produce a rotating wall electric

field (detailed in section 3.3). This AC signal is superimposed on the DC voltage

used for normal accumulator operation by the use of passive filters. The system

of phase-splitters used to produce the four AC signals cause an attenuation of

the voltages of 0.623±0.016 (as measured).

E1

E2

E3

E4

E5

<

Figure 2.6: Exploded view of the second stage of the accumulator with the rotat-
ing wall electrode forming one half of electrode 4 (E4).
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2.3 Timing and Analogue Output Control

As part of these studies a new measurement system was created using National

Instruments (NI) hardware and software. NI Labview is a graphical program-

ming package which allows quick and relatively straightforward development of

measurement and control systems. This package, coupled with the NI hardware

modules available, has been used to produce a system for the control and data

acquisition from the Swansea beam-line apparatus.

The system used for the experiments presented here may be broken down into

three components: a sequencer manages the timing requirements of the experi-

ments; analogue output cards provide electric potentials and a digitiser acquires

and saves the resultant data. The data are analysed post acquisition with a se-

ries of mathematical scripts written in Mathematica. A flowchart showing the

different elements of the system is given in figure 2.7.

2.3.1 Sequencer

The sequencer card used is a National Instruments PCI-7813R (RIO 3 million gate

FPGA) card with software drivers written by Dr Will Bertsche. The drivers allow

the card to be programmed to produce digital (TTL) pulses with timing resolution

down to 12.5 ns‡ on up to 80 digital output lines. A further 10 digital input lines

may be called upon for timing synchronisation with other pieces of hardware (a

functionality which is not used in these studies).

The card is controlled by the use of a series of medium level command lines

(ML) which are compiled into low level commands (or state lines) that are down-

loaded directly onto the FPGA for real-time execution. Each ML line contains

the following information:

State Time (Double) Controls the output duration, including transition time,

of the state line;

Infinite Timeout (Boolean) If the state line is waiting for a trigger on one of

the trigger input lines, should the state be allowed to hang for an “infinite”

‡This allows a minimum duration for a sequence command line of 37.5 ns (LOW-HIGH-
LOW).
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Figure 2.7: A flow chart showing the key elements of the sequencer system used
to perform experiments.
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time?;

DO Lines (Array of Booleans) The states (high/low) for the TTL outputs

of the FPGA during this state line;

Trigger In Lines (Array of Booleans) The state required for the digital in-

put lines to match before the state line should end;

Timeout Is Error? (Boolean) If the state does not have an infinite timeout

and the state time is exceeded should the sequence continue to run or be

terminated with an error generated;

Loop Count (Integer) It is possible to create looping state lines. The state

lines will loop between this state and the next (non-nested) loop return

state line this number of times;

Loop Return (Boolean) The return signal for a loop. The drivers also support

nested loops (loops within loops).

The TTL standard, as used by the FPGA, is not able to drive a 50 Ω termi-

nated signal into the high state and so a buffer has been made to increase the

current capability of the TTL signals to drive 50 Ω terminated lines.

2.3.2 Analogue Output

The system has two NI PCI-6713 cards each having 8 analogue outputs with

an output resolution of up to 1 MS/s. The outputs are bipolar with a range

of ±10 V in 12 bit resolution and are accessible via BNC connectors on a NI-

BNC2120 connector block. In their factory default mode the cards produce an

output value which can only be changed on the regular clock ticks provided by a

settable internal clock. Thus an output of 1 ms at 1 V followed by an output of

1 s at 2 V would require 1001 value lines to be written to the card. In this mode

output sequences requiring many different time scales result in huge numbers of

output states which can easily fill the on-board memory of the cards; a problem

which is overcome by the integrated system.
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The low voltage analogue signals are passed through amplifiers with gains

of 14. The amplifiers, which are produced by Aarhus University, are built on

a PA241DW high voltage operational amplifier circuit. Overall, the amplifying

circuit has a transition time (10-90%) of ∼3 µs. Thus, analogue output in the

range of ±140 V may be employed on this apparatus with a timing resolution

down to 3 µs.

2.3.3 Digitisation

Originally measurements were digitised by the use of an NI PCI-5152 2 GS/s

(8 bit) digitiser card, however part way through these studies this card failed and

a much slower PCI-6221 card capable of 250 kS/s with 16 bit resolution was in-

stalled. The digitiser software written allows many of the common functionalities

of a digital oscilloscope such as peak-to-peak measurements and averaging. One

advantage of this digitiser system over a conventional oscilloscope is the ability

to record at a repetition rate of over 50 Hz and to record each of the traces

for post-acquisition averaging. This allows a more flexible system for error and

uncertainty analysis.

The digitised signals are typically processed post-acquisition using a series of

scripts written as Mathematica notebooks, however the output is in an ASCII

tab separated value (.TSV) format which may be interpreted by most programs.

2.3.4 Integration into a single system

The hardware was configured so that the three elements could be integrated into

a single measurement system. Software was written to allow easy use of this

integrated system and a certain degree of automation can be achieved. The user

supplies the following settings either in a sequence line, as shown in figure 2.8, or

in an ASCII file:

Duration The duration of the output state;

DO States The digital output states;

DI States The digital input states;
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Label A non-functional label;

AO Steps The number of steps which should be taken to produce the analogue

output as it is possible to ramp the analogue output in a number of steps

rather than a single transition. If this is set to zero then the higher timing

resolution capability of the digital output may be accessed;

Device 1 AO The target analogue output for the first NI PCI-6713 analogue

output card;

Device 2 AO The target analogue output for the second NI PCI-6713 analogue

output card.

Figure 2.8: An example of a GUI sequence line used to control the timing and
output.

The software has been written to interface with additional hardware as re-

quired. Prior to the execution of a sequence a value is written to a global variable

along with a Boolean flag indicating if the variable has been acknowledged. Once

this variable has been acknowledged the flag is set to true and the execution of

the sequence may commence. The sequencer has been successfully integrated

with the laser system, phosphor screen, rotating wall function generator, buffer

gas pressure control and vacuum valve control using this system.

Subroutines have also been written which facilitate the creation of sequences

and the global variable settings programmatically. Using these is it possible to

automatically create large numbers of sequences with varying parameters. As an

example, a typical frequency scan as shown in chapter 4 requires 1111 sequences

and thus these subroutines are invaluable.

The regular internal clock of the analogue output cards was replaced by a

digital signal from the sequencer. Thus, each different output state would require

only one set of values independent of the output duration, thereby overcoming

the memory issue stated earlier.
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In summary, the system is capable of:

• Analogue output in the range of ±140 V with a timing resolution of 3 µs;

• TTL digital output with a minimum state duration of 37.5 ns and timing

resolution of 12.5 ns;

• Sequence synchronisation (via TTL Input) with a minimum state duration

of 37.5 ns and timing resolution of 12.5 ns;

• Signal digitisation;

• Interfacing with other hardware.

2.4 Radial Diagnostics

2.4.1 Phosphor Screen

Figure 2.9: A drawing of the phosphor screen assembly used as part of these
studies. (Model by Serena Kerrigan).
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A phosphor screen assembly (see figure 2.9) is located in a pumping cross after

the accumulator as shown in figure 2.1. The assembly houses a grid for particle

energy selection, a phosphor screen and a 45 degree planar mirror to reflect an

image of the back of the phosphor screen to a window located in the side of the

pumping cross. When charged particles are accelerated into the phosphor of type

P43 (Gd2O2S:Tb), light is emitted in the range of 360 - 680 nm (maximally at

545 nm), with a 90–10% decay time of 1 ms [43]. This is captured using a Santa

Barbara Instrument Group ST-7XE camera. This particular camera is designed

primarily for astronomical imaging with a telescope and is therefore not able to

be triggered by a hardware signal. Given the very small light yield produced by a

single positron cloud, and the relatively high background, the signal is integrated

(exposed) for 1000 s (10,000 clouds at a 10 Hz trap repetition cycle each containing

around 104 positrons). An additional background image without the presence of

the cloud signals is also taken for 1000 s. Thus a complete image of a positron

cloud with this system takes 2000 s.

The images are fitted with a two-dimensional Gaussian of the form

N(x, y) =
A

2πσ2
exp

(
−(x− x0)

2 + (y − y0)
2

2σ2

)
(2.5)

where (x0, y0) is the centre of the cloud in Cartesian coordinates, and σ is related

to the width of the cloud, with the full width half maximum (FWHM) being

equal to 2σ
√

2 ln(2).

2.4.2 Hole Masking Method

2.4.2.1 Theory

It will be shown in section 3.1.2 that a thermalised cloud of non-interacting

charged particles in a Penning-type trap has a 2-dimensional Gaussian distri-

bution, N(r), in the radial plane. This is confirmed by phosphor screen images

such as the example shown, together with a fit of the form given by equation 2.5,

in figure 2.10.

The 1000 s required for a phosphor screen image (assuming a background
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Figure 2.10: Top-left: an image of a cloud of positrons taken with the phosphor
screen. Top-right: a 2D fit to the positron cloud distribution of the
form given in equation 2.5. Bottom: 3d scatter plots of the pixel
intensity from different viewpoints; the surface represents the 2D fit.
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image has already been taken) is not very practical for the studies presented

in this thesis as a very large number of measurements was required. Thus, an

alternative method of determining the radial extent of the positron cloud has been

developed using a plate with a circular aperture of radius r0 to mask the cloud.

By measuring the number of positrons annihilating on the plate, Nmask, along

with the number of positrons escaping through the hole, Ntrans, it is possible to

determine the width of the cloud using:

Ntrans =

∫ r0

0

2πrN(r) dr = N0

(
1− exp

(
− r2

0

2σ2

))
(2.6a)

Nmask =

∫ ∞

r0

2πrN(r) dr = N0 exp

(
− r2

0

2σ2

)
. (2.6b)

In figure 2.11, the geometrical interpretations of Nmask and Ntrans may be seen.

Thus, combining equations 2.6 and rearranging gives

σ

r0
=

1√
2 ln

(
1 + Ntrans

Nmask

) . (2.7)

The uncertainty in which may be calculated from

(
∆σ

r0

)2

=
N2

trans∆N
2
mask +N2

mask∆N
2
trans

8N2
mask(Nmask +Ntrans)2 ln

(
Nmask+Ntrans

Nmask

)3 , (2.8)

where ∆ denotes the uncertainty in a quantity. A plot of the function given in

equation 2.7, as shown in figure 2.12, shows that this method is most suited to

clouds with a radius in the range 2r0 ≤ σ ≤ 8r0 as this is the region in which the

function has a reasonable sensitivity to variations in Ntrans/Nmask.

Nmask and Ntrans are measured by using the caesium-iodide detectors posi-

tioned as illustrated in figure 2.13. The annihilation plates are centred in their

respective pumping crosses. As the positron cloud traverses the system the first

caesium-iodide detector measures Nmask and the second measures Ntrans.

It was anticipated that obtaining a very high degree of accuracy when aligning

the hole and cloud centre would be problematic. Vertical alignment could be
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Figure 2.11: Simulated plots of an idealised cloud with a Gaussian profile. The
upper right image represents the transmitted signal (Ntrans) while
the lower right image represents the masked signal (Nmask).
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Figure 2.12: A graph showing the relationship between the cloud width to hole
radius ratio ( σ

r0
) and the transmitted to masked signal ratio (Ntrans

Nmask
)

determined from equation 2.7.
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Figure 2.13: A schematic showing the implementation of the hole method on the
Swansea positron beam-line.

achieved by moving the plate on a linear manipulator. In the horizontal direction,

however, the alignment could only be changed by moving the large steering coils.

In figure 2.14 the numerically calculated effect of a misalignment of the hole with

respect to the centre of the ejected cloud is shown. It can be concluded that

this method still gives reasonable estimates with an error less than few percent

provided that σ
r0

is greater than the size of the misalignment.
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Figure 2.14: Figure showing the effect of varying severities of misalignment on
the calculated cloud width. (No misalignment – Black, 0.5σ mis-
alignment – Blue, σ misalignment – Red.
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Care has been taken to verify the alignment of the positron clouds with the

hole centre by the use of images from the phosphor screen. The hole was posi-

tioned in the centre of the cross (see figure 2.1) and the cloud position adjusted

by moving the appropriate steering coils. Figure 2.15 shows images of positron

clouds taken using the phosphor screen both with and without the masking in

place. The centres of the features were determined using a 2D-fit implemented

in Mathematica. This gives the centres, (x0, y0) in units of pixels, of the masked

and unmasked features as (25.8±0.5, 23.7±0.5) and (27.7±0.3, 27.3±0.3) respec-

tively. Given the screen calibration at the time of 1 pixel = 0.129±0.001 mm

gives a hole-cloud misalignment of 0.52±0.07 mm.

Figure 2.15: Images of positron clouds taken using the phosphor screen. Left:
Unmasked. Right: Masked by the hole. The red dot is the fitted
centre of the cloud and the blue dot is the fitted centre of the hole.
The scale shown is in units of pixels.

In order to verify this method of determining the radial extent of the cloud a

frequency scan was performed using both the method above and fitting to phos-

phor screen images for comparison. Frequency scans are detailed in section 4.2.1

however, in short, they are used here to produce positron clouds of varying radii

(σ) and particle number (N0). Figure 2.16 shows the width of the clouds during

a measurement using both the phosphor screen and the hole method which has

been described herein.

Thus the masking method described herein offers a reliable method of de-

termining the radial width of a cloud of non-interacting charged particles in
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Figure 2.16: A comparison of the hole-masking method of determining the cloud
size σ (blue) and fitted images taken using the phosphor screen (red).
The uncertainties associated with the fitted images are too small to
be visible on the plotted scale. The sizes have been normalised to
the weighted means of the data-sets to eliminate calibration errors.
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a Penning-type trap. It is a far more rapid method than using the phosphor

screen, reducing the acquisition time by a factor of 104 assuming averaging over

10 measurements is used.



Chapter 3

Background Theory

“Nature has given man one tongue, but two ears, that we may hear twice as much
as we speak”

— Epictetus (c. AD 100)

In section 3.1 the motion of charged particles in Penning-type traps is pre-

sented. Such traps are commonly used in experiments for the storage of charged

particles. Section 3.2 details the operation of a specific type of trap: a two-stage

buffer gas positron accumulator. The accumulation of positrons has facilitated

the studies of many-positron effects∗ as well as the formation of very narrow

mono-energetic positron beams, suited to atomic physics and scattering measur-

ments. Two-stage positron accumulators are generally smaller and therefore both

cheaper and easier to fabricate than their three-stage counterparts. The final sec-

tion (section 3.3) presents the electric field for a segmented cylindrical electrode

and shows, with appropriately applied potentials, how this may be used to form

a rotating wall electric field.

∗A many-positron effect is defined as a physical effect involving more than a single positron,
such as is the case with positron plasmas.

39
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3.1 Charged Particles in Penning-Type Traps

A Penning-type trap uses static electric and magnetic fields to confine charged

particles or alternatively clouds of charged particles consisting of only a single

sign of charge. Although the term has not been readily accepted by the physics

community the system of a charged particle confined in a Penning-type trap is

sometimes referred to as geonium, since all potentials are with respect to ground

and thus the particle may be considered bound to the earth [44]. Penning traps

have been used in many high precision experiments including:

• The first trapping of anti-protons [45] and the subsequent measurement of

the anti-proton to proton mass ratio to a fractional uncertainty of 4×10−8 [46].

• The most precise measurement to date of the electron g-factor [47] of

g/2 = 1.001 159 652 193 (4). This may be compared with a value of

g/2 = 1.001 159 652 459 (135) given by QED with corrections to the eighth

order [48];

• The measurement of the positron g-factor to a similar accuracy [47] : Com-

parison of this value with the electron g-factor has given the most precise

test of CPT invariance using leptons to date;

• The confinement of a single positive Barium ion was achieved [49], facili-

tating molecular spectroscopic studies of trapped ions [50].

The conventional Penning trap design by Dehmelt uses hyperbolic electrodes,

as illustrated in figure 3.1, to produce a quadrupole electric field in the trap. This

potential may be expressed as

φ(x, y, z) =
V0

2d2

(
z2 − 1

2
x2 − 1

2
y2

)
, (3.1)

where V0 is the voltage applied to the electrodes and d is a length parameter

associated with the trap geometry. This potential is shown in figure 3.2. Another

Penning-type trap is the Penning-Malmberg trap. This uses three cylindrical

electrodes to produce an electric potential minimum as illustrated in figure 3.3.
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A number of techniques may be employed to enhance the quadratic term and

minimise higher order terms in the expansion of this minimum including inter-

mediate compensation electrodes to produce other cylindrical-Penning trap ge-

ometries. The cylindrical form of Penning-traps are easier to fabricate than the

original hyperbolic Penning traps and have the advantage of being open ended

and therefore easier to load with particles.

All of these trap types are submerged in a uniform magnetic field which lies

parallel to the axis of cylindrical symmetry of the trap (conventionally in the ẑ

direction).

Figure 3.1: A 3-dimensional plot showing the electrodes used in a Penning trap
to produce a quadrupole potential.

The motion of a charged particle of mass m and charge q in the non-relativistic

limit in an electromagnetic field is described by the Lorentz equation

mẍ = q (E + ẋ×B) , (3.2)

where E and B are the electric and magnetic fields at the location x. Inserting

the electric field E = −∇φ where the electric potential, φ, is given by equation 3.1

and the magnetic field B = Bẑ, equation 3.2 may be separated into axial, z, and
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Figure 3.2: A cross section of the electric field produced by the Penning trap
geometry. The blue electrodes represent the end-caps, while the red
electrode is a cross section of the ring electrode. The gradient illus-
trates the quadrupole field, with red being the lower potential and
blue being higher potential.

Figure 3.3: A schematic of a cylindrical-Penning Trap. The end electrodes (blue)
are held at a higher potential while the central electrode (red) is held
at a lower potential. The colour scheme is such that this can be
compared with figure 3.1. The dotted line is a quadratic fit to the
potential minimum.
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radial, r, equations as

r̈ − Ωcẑ × ṙ − 1

2
ω2

zr = 0, (3.3a)

z̈ + ω2
zz = 0, (3.3b)

where Ωc and ωz are the cyclotron and axial bounce frequencies respectively.

These are defined as

Ωc =
qB

m
, (3.4a)

ω2
z =

qV0

md2
. (3.4b)

3.1.1 The Solution in Cartesian Coordinates

The motion of charged particles in a Penning-type trap is most easily understood

in Cartesian coordinates. Re-writing equations 3.3 in Cartesian coordinates gives

ẍ =
ω2

z

2
x+ Ωcẏ (3.5a)

ÿ =
ω2

z

2
y − Ωcẋ (3.5b)

z̈ = −ω2
zz. (3.5c)

Using the definition

Λ = x+ iy, (3.6)

equations 3.5a and 3.5b can be combined to give

Λ̈ =
ω2

z

2
Λ− iΩcΛ̇. (3.7)

This equation may be solved by making the substitution Λ = e−iωt giving the

characteristic equation

2ω2 − 2Ωcω + ω2
z = 0, (3.8)
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which has roots

ω± =
1

2

(
Ωc ±

√
Ω2

c − 2ω2
z

)
. (3.9)

The positive root refers to the modified cyclotron frequency (ωc) and the negative

root referring to the magnetron frequency (ωm)†. This shows that a requirement

for confinement is that Ω2
c > 2ω2

z .

The solutions to equations 3.5a and 3.5b are thus

x = |A+| cos(ω+t+ φ+) + |A−| cos(ω−t+ φ−), (3.10a)

y = |A+| sin(ω+t+ φ+) + |A−| sin(ω−t+ φ−). (3.10b)

The solution to equation 3.5c is trivial:

z = |Az| cos(ωzt+ φz). (3.11)

The constants of integration A±,z and φ±,z are determined by the initial position

and velocity of the particle.

Thus, the motion of the particle is described by three well defined frequencies

as illustrated in figure 3.4. The motion in the axial direction, ẑ, is a periodic

bounce at the frequency ωz. In the transverse plane, ρ, the particle follows

a path described by an epicycloid; that is, the superposition of a fast circular

motion with an angular frequency ωc, and a slow circular motion with an angular

frequency ωm.

For trapped particles in a Penning-type trap there exists the hierarchy

ωm < ωz < ωc. (3.12)

Table 3.1 gives examples of the modified cyclotron, magnetron and axial bounce

frequencies of various ions in a Penning-type trap with typical trap parameters.

†The notation ω± and (ωc, ωm) are used interchangeably where the former often yields
compact mathematical formulae and the latter is more commonly used in experimental appli-
cations.
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Table 3.1: Typical modified cyclotron, axial bounce and magnetron angular fre-
quencies for various charged particles in a Penning trap with V0/d

2 =
2× 105 Vm−1 and B = 40 mT.

ωc [rad s−1] ωz [rad s−1] ωm [rad s−1]

e+ 7.03× 1010 1.88× 108 2.50× 106

1H+ 3.81× 107 4.38× 106 2.52× 105

3Li+ 1.25× 107 2.53× 106 2.55× 105

238U91+ 1.44× 107 2.71× 106 2.54× 105

198Hg+ Not Trapped 3.11× 105 Not Trapped

Figure 3.4: The three fundamental motions in a Penning trap: magnetron motion
(blue), cyclotron motion (green) and axial bounce (red).



CHAPTER 3. BACKGROUND THEORY 46

3.1.2 The Solution in V± Coordinates

A different coordinate system may be used allowing the magnetron and cyclotron

motions to be decoupled. These new coordinates allow further investigation of

properties such as the energetics of the trapped particles to be carried out more

easily as well as a so-called guiding centre approximation to be made on the

particle motion which neglects the fast cyclotron motion. These coordinates are

also used in chapter 4 to solve a more complicated system.

The magnetron and cyclotron motions are separated by the use of the vectors

V± defined as

V± = ṙ − ω∓ẑ × r. (3.13)

Differentiating equation 3.13 and inserting the result into equation 3.3a, as shown

in appendix A, gives

V̇
±

= ω±ẑ ×V±, (3.14)

so, V+ (V−) rotates about a circle with frequency ω+ (ω−). Taking the cross

product of the difference (V+ −V−) and ẑ gives

r = − ẑ × (
V+ −V−)

ω+ − ω−
. (3.15)

Uniform circular motion is described by ωr = −ẑ × v̇, where ω and v̇ are the

angular frequency and velocity of the circular motion respectively. Equation 3.15

therefore represents the superposition of two circular orbits: i.e. an epicycloid.

The Hamiltonian for the radial motion of the particle is equal to the sum of

the kinetic energy of the particle and the repulsive electrostatic potential energy

as

Hr =
1

2
m

(
ṙ2 − 1

2
ω2

zr
2

)
(3.16)

Using equation 3.15 and its derivative, the above equation becomes

Hr =
1

2
m

(
ω+(V+)2 − ω−(V−)2

ω+ − ω−

)
= H+ +H− (3.17)

with H+ being the cyclotron Hamiltonian and H− the magnetron Hamiltonian.

The magnetron Hamiltonian has a negative sign leading to an unstable motion.
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The potential form given in equation 3.1 shows that while a confining potential

exists in the ẑ direction, a repulsive term exists in the radial (r = (x, y)) plane.

The magnetron motion of the particle may be viewed as a rotation about the

top of a potential hill as illustrated in figure 3.5. If energy is removed from the

magnetron motion the particle will become lower around the potential hill and

thus the magnetron radius increases until the particle is eventually lost when it

hits one of the electrodes.

Figure 3.5: The magnetron motion may be viewed as a rotation about the top of
a potential hill. If energy is removed the particle will circle around
the hill at a lower energy with a larger radius.

The kinetic energy contained within the magnetron motion may be written

as

Em =
1

2
mω2

mA
2
m, (3.18)

where Am is the amplitude of the magnetron motion. This may be re-arranged

to give the amplitude of the magnetron motion as a function of energy as

Am =

√
2Em

mω2
z

. (3.19)

Assuming an ensemble of non-interacting particles with a thermal distribution,

Nr,
Nr

N0

= exp

(
− Em

kBT

)
, (3.20)
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it may be concluded that,

Nr

N0

∝ exp

(
−mω

2
mA

2
m

2kBT

)
. (3.21)

Therefore, a collection of thermal non-interacting particles in a Penning trap will

have a Gaussian distribution in the radial plane. This model will hold only for a

low density cloud and fails as the cloud densities and temperatures approach the

plasma regime.

3.1.3 Damping the Motion of the Trapped Particles

Trapped particles may be cooled by inelastic collisions with a suitable cooling

gas. This may be modelled by a Stokes’ viscous drag term,

ẍ = − q

mK
ẋ, (3.22)

where K is defined as the particle mobility in the gas at the given temperature

and pressure. The effect of this term is to modify equations 3.5 to be

ẍ =
ω2

z

2
x+ Ωcẏ − κẋ, (3.23a)

ÿ =
ω2

z

2
y − Ωcẋ− κẏ, (3.23b)

z̈ = −ω2
zz − κż. (3.23c)

where κ = q/(Km). Using the definition Λ = x+iy allows equation 3.23a and 3.23b

to be combined giving

Λ̈ =
ω2

z

2
Λ− (κ+ iΩc) Λ̇. (3.24)

The substitution Λ = e−iωt gives a characteristic equation with roots given by

ω± =
1

2
(Ωc ± F+ − i (κ± F−)) , (3.25)
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where

F± =
1√
2

(√
(Ω2

c − 2ω2
z − κ2)2 + 4Ω2

cκ
2 ± (

Ω2
c − 2ω2

z − κ2
)) 1

2

. (3.26)

Assuming Ωc, ωz >> κ this simplifies to

ω± ≈
Ωc ±

√
Ω2

c − 2ω2
z

2

(
1∓ i

κ√
Ω2

c − 2ω2
z

)
. (3.27)

The full solution may be written as

x = |A+|e−α+ cos(ω̃+t+ φ+) + |A−|eα− cos(ω̃−t+ φ−), (3.28a)

y = |A+|e−α+ sin(ω̃+t+ φ+) + |A−|eα− sin(ω̃−t+ φ−), (3.28b)

where

α± =
1

2
(F− ± κ) , (3.29a)

ω̃± =
1

2
(Ωc ± F+) . (3.29b)

The amplitude of the cyclotron motion decays in time with a time constant of

α+ however, as stated earlier, the removal of energy from the magnetron motion

causes the amplitude to increase in time with a time constant of α−. This be-

haviour is shown in figure 3.6 by the blue solid line‡. As α+ >> α− the magnetron

motion is often considered to be quasi-stable.

Equation 3.23c is solved trivially by

z = Aze
−κt cos (ωzt+ φz) . (3.30)

The axial motion is therefore described by a damped harmonic oscillator.

‡The values of damping coefficient and frequencies used to produce this image are not typical
for a particle in a Penning-type trap but were chosen to illustrate the important features over
reasonable length scales.
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Figure 3.6: The motion of a charged particle in a Penning trap with buffer gas
cooling modelled as a Stokes’ viscous drag term. The solid blue line is
the full motion, while the red dashed line represents a guiding centre
approximation.
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3.1.4 Guiding Centre Approximation

For most particles in Penning-type traps the cyclotron motion is far faster and of

a smaller radius than the magnetron motion. It is often possible to maintain the

mean behaviour of a particle in the Penning-type trap while neglecting the fast

cyclotron motion: a guiding centre approximation. As an example, the motion of

a charged particle in a Penning-type trap in the presence of a frictional or drag

term is presented. A Stokes’ viscous drag term modifies equation 3.14 to

V̇
±

= ω±ẑ ×V± − κ

(
V± +

ω∓
ω+ − ω−

(
V+ −V−))

. (3.31)

As stated, in a guiding centre approximation the faster cyclotron motion is ne-

glected. Thus the above simplifies to

V̇− = ω−ẑ ×V− + κ

(
ω−

ω+ − ω−

)
V−. (3.32)

This represents a slowly expanding circular motion, as shown in figure 3.6 by the

red dashed line.

3.2 Positron Accumulation

The Surko-type positron accumulator uses a series of cylindrical electrodes, simi-

lar to the cylindrical Penning trap, to produce an electric potential well confining

the positrons axially, while a uniform magnetic field provides radial confinement.

The classic Surko design uses three stages of varying diameter electrodes with

differential pumping to produce three pressure regimes.

The Swansea positron group and Greaves and Moxom simultaneously devel-

oped the use of a smaller two-stage accumulator [51, 52]. The design of the

Swansea accumulator, detailed in section 2.2, was governed by its physical ap-

plication; namely to maximise the positron yields at a 10 Hz repetition rate to

match that of the laser system (detailed in section 1.2.1).

The accumulator is usually operated in an accumulate-hold-expel sequence

as illustrated in figure 3.7. Upon expulsion, the positrons annihilate on a target
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 Accumulate 

 Hold 

 Expel 

Figure 3.7: Schematic of the cylindrical electrodes of the Swansea two-stage
positron accumulator with the axial electrical potentials at each stage
of operation: accumulate; hold; expel.
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placed in the path of the ejected cloud and the resultant gammas are detected

using a CsI coupled to a photodetector.

During accumulation, positrons enter the accumulator over the small potential

lip and, using the correct nitrogen buffer gas pressure, will collide with a nitrogen

molecule during their first pass of the accumulator. Each collision results in

an average energy loss by the positron of ∼ 9 eV due primarily to the electronic

excitation of the nitrogen molecules [53]. Trapping is negligible for positrons with

an energy less than 8 eV; above 11 eV the formation of positronium is as efficient

at causing the loss of positrons as electronic excitation is at trapping them. Thus

a small trapping window of a few eV wide exists for efficient trapping.

Given a positron trapping rate R = I0ε e+ s−1 (where I0 is the intensity of the

incoming beam and ε is the positron capture efficiency) and a positron lifetime

of τ the number of accumulated positrons as a function of time is given by the

differential equation
dn

dt
= R− n

τ
, (3.33)

such that the number of accumulated positrons within the trap at any time is

given by

n(t) = Rτ
(
1− e−

t
τ

)
. (3.34)

An example of an accumulation curve following equation 3.34 is shown in

figure 3.8. Initially the trap fills at a constant rate before curving off towards

saturation given by n∞ = Rτ when t >> τ . Within 3τ the trap contains over

95% of the potential storage, n∞.

Information regarding the operation of the positron accumulator may be de-

termined from the pressure dependence of n∞ and τ . The positron lifetime at

low pressures is expected to be inversely proportional to buffer gas pressure (P )

as

τ =
1

λ
=

1

BP
. (3.35)

The capture efficiency (ε) is expected to behave as

ε = f
(
1− e−DP

)
(3.36)

where f is a branching ratio of the cross sections of trapping processes (electronic
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Figure 3.8: An example plot of the number of particles in the trap as a function of
accumulation time, n(t), and a fit of the form given in equation 3.34.
Fitted parameters are n∞ = 1.574±0.017 V/arb; τ = 0.917±0.027 s.
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excitation in the positron-N2 collision case) to processes causing positron loss from

the beam (e.g. positronium formation). The constant D is related to the total

scattering cross section for positron-N2 collisions. Thus, an ideal accumulator

would have

n∞ = I0
f

BP

(
1− e−DP

)
. (3.37)

However, figure 3.12 shows that the Swansea two-stage accumulator does not

follow this behaviour due to an additional loss mechanism. This is an as yet

undetermined pressure-dependent loss term believed to originate from the transfer

of the positrons from the first to the second stage of the accumulator. It has been

found that this can be represented by the generic form EP/(EP +F ) where F is

a constant and EP is the probability of capture in the second stage. This allows

n∞ to be written as

n∞ =
fI0E

B

(
1− e−DP

EP + F

)
. (3.38)

Data recorded using the Swansea two-stage accumulator are shown in fig-

ures 3.9–3.12. The fitted parameters cannot be used to determine values for cross

sections as the absolute pressure is not measured in the accumulator (as detailed

in section 2.2). At high pressures the trap loss rate, λ, as shown in figure 3.10

shows a deviation from the expected linear behaviour given in equation 3.35.

This deviation is reproducible and has been reported previously [54], however the

cause remains unknown.

Clouds of cold positrons are useful for many applications, including the study

of positron-molecule/atom interactions. Although nitrogen has been found to

be a very efficient buffer gas to capture positrons it is an inefficient positron

cooling gas. Once the positrons are trapped in the second stage they cool to

room temperature by vibrational and rotational excitation of the background

gas. Table 3.2 shows cooling times due to vibrational excitation as measured by

Greaves and Surko using their three stage accumulator for various gases [55].

Figures 3.13 and 3.15 were produced by accumulating for 100 ms and subse-

quently lowering the exit potential (E5) to varying heights both with and without

the presence of SF6 as a cooling gas. Prior to accumulation the exit potential was

grounded to ensure that the trap was empty. These figures therefore represent

the complementary cumulative distribution function (CCDF) of the energy of the
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Figure 3.9: A plot of accumulation rate as a function of buffer gas pressure fit-
ted with equation 3.36. Fitted parameters are fI0 = 3.07±0.18 and
D = 71800±6300.
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Figure 3.10: A plot of trap loss rate (λ) as a function of buffer gas pres-
sure fitted with λ = 1/τ = BP . Fitted parameters are
B = 100300±5300 s−1 mbar−1.
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Figure 3.11: A plot of the trap lifetime (τ) as a function of buffer gas
pressure fitted with equation 3.35. Fitted parameters are
B = 100300±5300 s−1 mbar−1.
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Figure 3.12: A plot of trap saturation, n∞, as a function of buffer gas pressure
fitted with equation 3.38.
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Table 3.2: Positron cooling times (τc) and annihilation times (τa) for a selection
of molecular gases at 2×10−8 Torr and relative trapping efficiencies
(ε). Data from [55].

Gas τa (s) τc (s) ε
SF6 2190 0.36 0.07
CF4 3500 1.2 -
CO2 3500 1.3 0.16
CO 2400 2.1 0.68
N2 6300 115 1

positrons in the clouds. The negated derivative of a CCDF gives the energy dis-

tribution of the positrons in the clouds which are shown in figures 3.14 and 3.16

with and without SF6 respectively. Figure 3.14 shows that at 10 Hz operation

with SF6 the accumulator produces a cloud with an energy distribution which

has a width of approximatly 0.5 eV: higher than would be expected if the cloud

reached room temperature (25 meV). This may be due to electronic noise from

the amplifiers or the manner in which the particles are accelerated when released

from the trap. Figure 3.16 illustrates the poor cooling effect of N2 given that the

energy distribution has a width of around 5 eV.

3.3 Rotating Wall Electric Fields

The electric potential, u, due to a segmented electrode can be derived using

Laplace’s equation. With appropriately applied voltages this electrode produces

a rotating wall electric field often used to compress plasmas comprised of particles

of a single sign of charge.

To calculate the electric potential, u, produced by a segmented electrode,

Laplace’s equation is solved for a segmented electrode between two end-cap elec-

trodes as shown in figure 3.17. The boundary conditions for this system of elec-

trodes may be defined in cylindrical coordinates (z, r, θ) as

u(z, r0, θ) = f(θ)g(z), (3.39)
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Figure 3.13: The cumulative energy distribution function of the positrons af-
ter 100 ms accumulation with both the SF6 and N2 pressures at
2×10−5 mbar. The solid line is not a fit but a smoothed curve to
guide the eye.
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Figure 3.14: The energy distribution of the positrons after 100 ms accumulation
with both the SF6 and N2 pressures at 2×10−5 mbar. The solid line
is not a fit but a smoothed curve to guide the eye.



CHAPTER 3. BACKGROUND THEORY 60

26 28 30 32 34 36
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Exit Potential @VD

C
C

D
F
@a

rb
.D

Figure 3.15: The cumulative energy distribution function of the positrons after
100 ms accumulation with the N2 pressure at 2×10−5 mbar. The
solid line is not a fit but a smoothed curve to guide the eye.
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Figure 3.16: The energy distribution of the positrons after 100 ms accumulation
with the N2 pressure at 2×10−5 mbar. The solid line is not a fit but
a smoothed curve to guide the eye.
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Figure 3.17: The segmented electrode, used to produce a rotating wall electric
field, for which the electric potential is solved in section 3.3. Va,b are
the voltages applied to the segments as shown, z0 is half the length
of the segmented electrode, r0 is the diameter of the electrodes and
L is half the total length of the system: the segmented electrode and
the end-caps.

where f(θ), as shown in figure 3.18, is

f(θ) =





−Va −π ≤ θ < −3π
4

−Vb −3π
4
≤ θ < −π

4

Va −π
4
≤ θ < π

4

+Vb
π
4
≤ θ < 3π

4

−Va
3π
4
≤ θ < π

, (3.40)

and g(z), as shown in figure 3.19, is given by

g(z) =

{
1 |z| ≤ z0

0 L > |z| > z0

. (3.41)

The analysis presented here is given explicitly for a four segment electrode

but is easily extended to any number of segments by a suitable redefinition of

f(θ).
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Figure 3.18: Graphical representation of the azimuthal boundary condition defin-
ing the rotating wall electrode, f(θ) (Blue) and its Fourier series, as
given by equation 3.55 terminated at 20 terms (Red).
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Figure 3.19: Graphical representation of the axial boundary condition defining
the rotating wall electrode, g(z) (Blue) and its Fourier series, as
given by equation 3.54 terminated at 20 terms (Red).
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3.3.1 The General Solution to Laplace’s Equation

Laplace’s equation states that the concentration of the electric potential (∇2u)

is zero. In cylindrical coordinates this is written as

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2
= 0. (3.42)

By separation of variables,

u(z, r, θ) = Z(z)R(r)Θ(θ), (3.43)

equation 3.42 may be written as,

∇2u

u
=

1

R

1

r

d

dr

(
r
dR

dr

)
+

1

Θ

1

r2

d2Θ

dθ2
+

1

Z

d2Z

dz2
. (3.44)

This equation is separable into three ordinary differential equations for Z(z), R(r)

and Θ(θ). First the equation governing Z(z) is

1

Z

d2Z

dz2
= ±k2. (3.45)

The boundary condition given by equation 3.39 requires that Z(z) tends to a

finite value within a finite domain. This is satisfied only by the −k2 and so the

+k2 may be dismissed as this would tend to zero as z → ∞. The solution for

Z(z) is therefore

Z(z) = A cos (kz) +B sin (kz) . (3.46)

Secondly, the equation governing Θ(θ) is

1

Θ

d2Θ

dθ2
= ±n2. (3.47)

Since, in cylindrical coordinates, θ is periodic in 2π the negative constant (−n2)

must be used with n an integer. This gives

Θ(θ) = a cos (nθ) + b sin (nθ) . (3.48)
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The radial dependence is given by R(r),

r

R

d

dr

(
dR

dr

)
− (k2r2 + n2) = 0 (3.49)

which is one of Bessel’s equations, with solutions discussed extensively in a num-

ber of texts (e.g. [56]). The solutions of interest for this problem are the modified

Bessel functions of the first kind of order n, In(x), such that

R(r) = In(kr). (3.50)

Laplace’s equation is linear and so any linear combination of the solutions

given above is also a solution. All solutions of the form given by 3.43 must

therefore be summed giving the general solution

u(z, r, θ) =
∞∑

n=0

∞∑
m=0

In(kmr) (Amn cos(kmz) +Bmn sin(kmz))

× (amn cos(nθ) + bmn sin(nθ)) . (3.51)

3.3.2 Applying the Boundary Conditions

Equation 3.51 may be simplified by the knowledge that the solution must be

symmetric in z → −z. The leads to the constants Bmn being zero. Also, as the

potential must be zero at z = L this requires

km =

(
m+ 1

2

)
π

L
, (3.52)

leading to

u(z, r, θ) =
∞∑

n=0

∞∑
m=0

In(kmr)Amn cos(kmz) (amn cos(nθ) + bmn sin(nθ)) . (3.53)

The Fourier series expansions of equations 3.40 and 3.41, (shown graphically
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in figures 3.18 and 3.19) yield:

g(z) =
∞∑

m=0

2

kmL
sin(kmz0) cos(kmz) (3.54)

and

f(θ) =
∞∑

n=1

4

nπ

(
Va sin

(nπ
2

)
cos

(nπ
4

)
cos(nθ)

+ Vb sin
(nπ

2

)
sin

(nπ
4

)
sin(nθ)

)
. (3.55)

Substituting the Fourier transforms of the boundary conditions into equation 3.53

and equating the coefficients of sin(nθ), cos(nθ) and cos(kmz) in each term defines

the coefficients amn, bmn and Amn. This gives the solution as

u(z, r, θ) =
∞∑

n=0

∞∑
m=0

AmnIn(kmr) cos(kmz) (an cos(nθ) + bn sin(nθ)) (3.56)

with

an =
4Va

nπ

(
sin

(nπ
2

)
cos

(nπ
4

))
, (3.57a)

bn =
4Vb

nπ

(
sin

(nπ
2

)
sin

(nπ
4

))
, (3.57b)

Amn =

{
0 n = 0

2
kmL

sin(kmz0)
In(kmr0)

n 6= 0
, (3.57c)

with km defined by equation 3.52.

3.3.3 Small Radius Approximation for a Rotating Wall

Electrode

In producing a rotating wall electric field, sinusoidally varying potentials are

placed on the four segments in quadrature (i.e. each offset by a phase of 90◦ with
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respect to the previous one). Thus

Va = Vr cos(ωrt) (3.58a)

Vb = −Vr sin(ωrt). (3.58b)

Where Vr is the amplitude of the rotating wall. Note that the choice of a minus

sign for Vb is a matter of convenience relating to the direction of rotation. The

full rotating wall electric potential is shown in figure 3.20.

Figure 3.20: The complete electric potential produced by a rotating wall elec-
trode evolving in time. Red represents a higher potential while blue
represents a lower potential.

The expansion of a modified Bessel function of the first kind of order n is

given by

In(x) =
∞∑

l=0

1

l!Γ(n+ l + 1)

(x
2

)2l+n

(3.59)

Since the sum in equation 3.56 runs over 1 ≤ n ≤ ∞ the only term contribut-

ing to leading order r is when n = 1 and l = 0. Thus the small radius (leading r

term) solution is a dipole electric field which may be written as

u(z, r ¿ r0, θ) ≈ Vr

(
2
√

2

πL

∞∑
m=0

cos(kmz) sin(kmz0)

I1(kmr0)

)
r cos(ωrt+ θ) (3.60)

Figure 3.21 shows the electric potential at the centre of the rotating wall

electrode. The electric field is spatially uniform and rotates about the electrode
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axis in time. This is represented by the white arrows of figure 3.21. This formalism

is used in the next chapter to compare a theoretical model based on a rotating

dipole electric field, with experimental results obtained using the rotating wall

electrode installed in the accumulator (as detailed in section 2.2).

Figure 3.21: The electric potential produced at the centre of a rotating wall elec-
trode showing a dipole behaviour. Red represents a more positive
potential while blue, a more negative one. The white arrows repre-
sent the electric field.



Chapter 4

Charged Cloud Compression

“Prediction is very difficult, especially if it’s about the future”

— Neils Bohr

Inspired by the work of Greaves and Moxom [24], a possible mechanism for

particle axialisation in a Penning-type trap using a rotating electric field has been

developed. Greaves and Moxom used an electrode split into eight segments to

produce a rotating quadrupole field. The Swansea positron accumulator has only

four segments and thus produces a rotating dipole field. In each case the rotating

electric field is applied asymetrically over the cloud resulting in compression. A

model has been developed for the case of the rotating dipole field to describe

the compression process. This model is then used to account for some of the

experimental results obtained using the Swansea positron accumulator.

4.1 Compression Model

As shown in section 3.3.3 a 4-segment electrode may, with the application of

appropriate potentials, be used to produce a rotating dipole electric field in the

radial plane. Laplace’s equation, ∇2u = 0, allows for three axial behaviours of a

68
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dipole potential: the uninteresting null, no potential; the constant, independent

of z; the linear, proportional to z, referred to as the asymmetric. Greaves and

Moxom found that applying the rotating wall electric field symmetrically over

the cloud resulted in no compression [24] and therefore the assymetric case is

considered in the analysis which follows.

The Penning trap potential, as given in equation 3.1, with a superimposed

asymmetric rotating dipole is given by

φ(z, r, θ) =
V0

2d2

(
z2 − r2

2

)
+
m

q
azr cos (θ + ωrt) , (4.1)

where ωr is the angular frequency and a is the amplitude of the rotating dipole.

Inserting this potential into the Lorentz equation along with the addition of a

viscous drag term, as presented in section 3.1.3, gives

z̈ + ω2
zz − r ·R + κż = 0, (4.2a)

r̈− Ωcẑ × ṙ− ω2
z

2
r + κṙ + Rz = 0, (4.2b)

where

R = a

[
cos (ωrt)

− sin (ωrt)

]
. (4.3)

4.1.1 The Complete Solution in Cartesian Coordinates

Equation 4.2 may be written in Cartesian coordinates as

ẍ =
ω2

z

2
x− a cos (ωrt) z + Ωẏ − κẋ, (4.4a)

ÿ =
ω2

z

2
y + a sin (ωrt) z − Ωẋ− κẏ, (4.4b)

z̈ = −ω2
zz − a (x cos (ωrt)− y sin (ωrt))− κż. (4.4c)
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By a transformation into coordinates which are co-rotating with the electric field

given by,

x =
(
ξ̃ cos (ωrt) + ψ̃ sin (ωrt)

)
, (4.5a)

y =
(
ψ̃ cos (ωrt)− ξ̃ sin (ωrt)

)
, (4.5b)

the equations of motion may be written as a set of coupled linear differential

equations as

¨̃ξ =
1

2

(
2ω2

r − 2Ωωr + ω2
z

)
ξ̃ − κωrψ̃ − κ ˙̃ξ + (Ω− 2ωr)

˙̃ψ − az, (4.6a)

¨̃ψ = κωrξ̃ +
1

2

(
2ω2

r − 2Ωωr + ω2
z

)
ψ̃ − (Ω− 2ωr)

˙̃ξ − κ ˙̃ψ, (4.6b)

z̈ = −aξ̃ − ω2
zz − κż, (4.6c)

or in matrix form, ẋ = M·x, as




˙̃ξ
˙̃ψ

ż
¨̃ξ
¨̃ψ

z̈




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

b −c −a −κ d 0

c b 0 −d −κ 0

−a 0 −ω2
z 0 0 −κ




·




ξ̃

ψ̃

z
˙̃ξ
˙̃ψ

ż




, (4.7)

where

b =
1

2

(
2ω2

r − 2Ωωr + ω2
z

)
, (4.8a)

c = κωr, (4.8b)

d = Ω− 2ωr. (4.8c)

The matrix M has eigenvalues given by the characteristic equation

a2(b− λ(κ+ λ)) +
(
λ(κ+ λ) + ω2

z

)

× (
b2 − 2bλ(κ+ λ) + c(c− 2dλ) + λ2

(
d2 + (κ+ λ)2

))
= 0. (4.9)
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This characteristic equation is a hexic (sixth order) polynomial in λ and by Galois

theory its roots cannot be written in a closed analytic form. Its roots can however

be investigated numerically. Figure 4.1 shows the typical form of the eigenvalues

as the rotating wall angular frequency is changed. The shapes of these frequency

responses are investigated further in the next section, however it is worth noting

that the root corresponding to λ5 in figure 4.1 has an imaginary part, representing

a frequency, which is similar in magnitude to the cyclotron frequency.

The full solution to equations 4.6 may be written as

x =
6∑

i=1

γivi exp (λit) (4.10)

where vi is the eigenvector associated with the eigenvalue λi, and the γi are

determined from the initial conditions.

4.1.2 An Approximate Solution in V± Coordinates

As was shown in section 3.1.2, the magnetron and cyclotron motions of a charged

particle in a Penning trap may be separated using the V± coordinates defined by

equation 3.13. The analysis presented in the previous section is now repeated in

the V± coordinates allowing approximations to be made more easily.

In the V± coordinates equations 4.2 may be written as

V̇ ±
x = −ω±V ±

y − κ

(
V ±

x +
ω∓

ω+ − ω−

(
V +

x − V −
x

))− az cos (ωrt) , (4.11a)

V̇ ±
y = ω±V ±

x − κ

(
V ±

y +
ω∓

ω+ − ω−

(
V +

y − V −
y

))
+ az sin (ωrt) , (4.11b)

z̈ = −ω2
zz − κż

+
a

ω+ − ω−

( (
V −

y − V +
y

)
cos (ωrt)−

(
V +

x − V −
x

)
sin (ωrt)

)
.(4.11c)

Since V+ (V−) resonates at ω+ (ω−) it can be seen that only the V − mo-

tion will be effected by rotating wall frequencies, ωr, close to the axial bounce

frequency, ωz. Therefore, employing the guiding centre approximation by ne-

glecting the rapid cyclotron motion shows the magnetron behaviour is governed
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Figure 4.1: The roots of the hexic polynomial given in equation 4.9. As the roots
always occur in complex conjugate pair, i.e.(λ1 = λ∗2), only the posi-
tive solution for the imaginary part is shown. Model parameters were
chosen to be experimentally realistic: a = 3×1014 s−2; Ω = 7×109 s−1;
ωz = 6×107 s−1; κ = 1000 s−1
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by

V̇ −
x = −ω−V −

y + κ
ω−

ω+ − ω−
V −

x − az cos (ωrt) (4.12a)

V̇ −
y = ω−V −

x + κ
ω−

ω+ − ω−
V −

y + az sin (ωrt) (4.12b)

z̈ = −ω2
zz − κż +

a

ω+ − ω−

(
V −

y cos (ωrt) + V −
x sin (ωrt)

)
. (4.12c)

Typically ω+ >> ω− >> κ, so the damping terms in equation 4.12a and 4.12b

are very small and may therefore be neglected. As was noted earlier in sec-

tion 3.1.3, the expansion of the motion the magnetron orbit is far slower than

other time scales and may therefore be considered as quasi-stable.

A transformation into coordinates which co-rotate with the rotating wall elec-

tric field as given by,

V −
x = ξ cos (ωrt) + ψ sin (ωrt) (4.13a)

V −
y = ψ cos (ωrt)− ξ sin (ωrt) , (4.13b)

allows equations 4.12 to be written as a set of coupled linear ordinary differential

equations as

ξ̇ = − (ω− + ωr)ψ − az, (4.14a)

ψ̇ = (ω− + ωr) ξ, (4.14b)

z̈ =
a

ω+ − ω−
ψ − ω2

zz − κż, (4.14c)

or in matrix form ẋ = M·x as




ξ̇

ψ̇

ż

z̈




=




0 − (ω− + ωr) −a 0

(ω− + ωr) 0 0 0

0 0 0 1

0 a
ω+−ω−

−ω2
z −κ



·




ξ

ψ

z

ż




(4.15)

with eigenvalues given by the characteristic equation

a2 (ωr + ω−) + (ω+ − ω−)
(
λ2 + (ωr + ω−)2) (

λ (λ+ κ) + ω2
z

)
= 0. (4.16)
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The solution to equations 4.14 may be written as

x =
4∑

i=1

γivi exp (λit) , (4.17)

where vi is the eigenvector associated with the eigenvalue λi and the γ are deter-

mined from the initial conditions. Given that the coefficients of the polynomial

in equation 4.16 are all real, the roots must appear in complex conjugate pairs.

Using the identity

α exp (βt) + α∗ exp (β∗t) = 2 |α|2 exp (Re [β] t) cos (Im [β] t− ∠ [α]) , (4.18)

it may be seen that the motion in this rotating coordinate frame is given by a

series of damped circular motions with frequencies and damping rates given by

the imaginary and real parts of the eigenvalues respectively.

The characteristic equation is a quartic (fourth order) polynomial in λ, the

roots of which may be written in a closed analytic form. However this is long

and cumbersome and so it was felt that some numerical investigations would be

worthwhile. A common approach in resonance type effects is to investigate the

dependence of the system on the driving frequency: a frequency scan. Applying

the same principle, using equation 4.16, graphs such as the one shown in figure 4.2

were produced. It was observed that the shapes of these graphs could be described

by the function:

λ = Ã

(
1±

∣∣∣∣
ω̃√

1 + ω̃2

∣∣∣∣
)
± i

(
B̃

(
ω̃ ±

∣∣∣
√

1 + ω̃2

∣∣∣
)

+ C̃
)
, (4.19)

where the constant Ã equals a quarter of the damping parameter, κ/4, and the

constant C̃ is equal to the axial bounce frequency of the system, ωz. Two addi-

tional parameters were introduced to allow the central position, ω0, and width,

δ, of the function to be varied. These were introduced as

ω̃ =
ωr − ω0

δ
. (4.20)

From equation 4.19 the full width at half maximum of this function may be
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Figure 4.2: The real and imaginary parts of the roots of interest given by equa-
tion 4.16 (filled circles) along with a fit of the forms given by equa-
tions 4.23 giving δ=875.52±0.44 kHz (line). Other parameters were
κ=10,000 s−1; a=8.8×1013 s−2; ωz=107 s−1; Ω=109 s−1.

derived as

FWHM =
2√
3
δ. (4.21)

The central frequency, ω0, corresponds to the frequency at which the real part of

the eigenvalues is extremised. This was found to lie at the negated sum of the

magnetron and bounce frequencies as

ω0 = − (ωz + ωm) . (4.22)

The variation of the width parameter, δ, was determined by fitting the numer-

ically calculated roots of equation 4.16 with the function given in equation 4.19

with varying system parameters: κ, a, ωz and Ω. The damping parameter, κ,

was found to have no effect on the response width, δ. The results of the remain-

ing parameter variations were plotted on a log-log scale and fitted with a linear

function to determine a power law dependence (see figure 4.3). In each scan

the fixed parameters were chosen to be experimentally realistic values: damping

parameter, κ=10,000 s−1; amplitude a=500e/m=8.8×1013 s−1; bounce frequency,

ωz=107 s−1; cyclotron frequency, Ω=109 s−1. From this it was determined that

the width, δ, was proportional to the applied amplitude, a, and was inversely

proportional to the root of the product of the bounce and cyclotron frequencies.

It was observed that the constant B̃ equals half the width parameter and so,
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Figure 4.3: Fits to the frequency response width, δ, as system parameters were
changed presented on a log-log scale. Top: Amplitude, a. Middle:
Bounce frequency, ωz. Bottom: Cyclotron frequency, Ω. The values
from the linear fits may be seen in table 4.1.



CHAPTER 4. CHARGED CLOUD COMPRESSION 77

Table 4.1: The gradients and intercepts of the linear fits shown in figure 4.3. The
gradients of these fits yield the power law dependence of the frequency
response width, δ on the varied parameters: a, ωz and Ω.

Varied Parameter Gradient Intercept
Amplitude, a 0.99815±0.00055 7.4744±0.0036
Bounce Frequency, ωz -0.5025±0.0020 21.791±0.035
Cyclotron Frequency, Ω -0.5076±0.0017 24.216±0.038

being careful to maintain the correct root associations∗, the eigenvalues may be

approximated by

λ =
κ

4

(
−1±s

√
ω̃2

1 + ω̃2

)
±t i

(
δ

2

(
ω̃ ∓s ω̃

√
1 + ω̃2

ω̃2

)
+ ωz

)
, (4.23)

where

ω̃ =
ωr + (ωz + ω−)

δ
, (4.24a)

δ =
a√
Ωωz

. (4.24b)

Both the real and imaginary parts of this approximate solution have been plotted

in figure 4.4.

Figure 4.5 follows the radial distance,
√
x2 + y2, of a particle given the solu-

tion found. As reference, this figure also shows the damping rate related to λ1

and λ2 as assigned in figure 4.4. Thus, it is the damping of the slower oscillation,

Re [λ2], which gives a measure of the axialisation rate of the particle, while λ2

gives the damping rate of the rapid oscillation. It is therefore possible to write

the axialisation rate, or compression rate in the case of a cloud, as

Γ =
κ

4

(
1−

∣∣∣∣
ω̃√

1 + ω̃2

∣∣∣∣
)
. (4.25)

This is a cusped shaped function and will be compared with experimental results

∗The shorthand notation ±s,t is used to distinguish between valid ± combinations.
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Figure 4.4: Approximate rotating wall eigenvalues as given by equation 4.23.
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Figure 4.5: The time evolution of the radial distance of a particle from the axis
of a Penning trap with a superimposed rotating dipole electric field
(black). Also included is a plot of exp (λ1t) (blue) and exp (λ2t) (red)
as labelled in figure 4.4.
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taken using the rotating wall installed in the accumulator.

4.2 Experimental Results

The only published results of rotating wall compression observed in the single

particle regieme are by Greaves and Moxom [24]. These investigators used a

central density to characterise the compression observed during the application of

an assymetric rotating quadrupole electric field over a positron cloud. Although

they did not provide a definition of their central density it will clearly be a

function of not only the cloud width but also the total number of positrons.

The results presented here refer only to the cloud width, and are therefore not

directly comparable with those of Greaves and Moxom. However the mechanism

responsible for compression is expected to be the same in both experiments.

4.2.1 Methodology

The compression rates are measured using the following method. Initially a

cloud containing around 104 positrons is accumulated over 100 ms using the

potentials given in table 4.2 and a magnetic field of 50 mT. A buffer gas pressure

of 2×10−5 mbar and cooling gas pressure of 2×10−5 mbar have been found to

be the most effective for the compression experiments. The accumulated clouds

initially have a radius of 3 mm† and a length of 5 mm (approximated from the

potential and measured temperature). Such a cloud at room temperature (300 K)

would have a Debye length, as given by equation 1.1, of 5 mm and is therefore

not considered a plasma.

Accumulation is stopped and the rotating wall electric field is applied for a

certain time, t, with a frequency fRW and peak-to-peak amplitude Vpp. Sub-

sequently, the cloud is ejected from the trap and the width, σ, of the cloud is

determined using the method described in section 2.4.2. The cloud width, σ(t),

was found to decrease smoothly from its initial value with no rotating wall to a

†From figure 4.6 the half width at half maximum is 8×
√

2 ∗ ln(2) mm however this is the
radius as measured in a magnetic field which is a factor of 10 lower than that in the accumulator
and must therefore be divided by

√
10.
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Table 4.2: The potentials applied to the accumulator electrodes indicated in fig-
ure 2.5 during accumulation, compression and expulsion, and chosen
to maximise the positron yield.

E0 Grad High Grad Low E1 E2 E3 E4 E5
Accumulation 45 44 38 35 34 33 28 140
Compression 100 44 38 35 34 33 28 140
Expulsion 100 44 38 35 34 33 28 0

constant value, implying that the particles could not be fully axialised (for an

example see figure 4.6). The reason for this is as yet not fully understood but

may be due to space-charge repulsion, asymmetries in the magnetic or electric

field, or possibly scattering on the background gas. A plausible way in which this

may be modeled is by the inclusion of a constant expansion term, γ, in addition

to the compression rate, Γ, given by equation 4.25. The resulting evolution can

then be described by the differential equation:

σ̇ = −Γσ + γ, (4.26)

which has the solution

σ(t) =
(
σ0 − γ

Γ

)
exp (−Γt) +

γ

Γ
, (4.27)

where σ0 is the initial cloud radius. A fit of the form given in equation 4.27 is

shown in figure 4.6.

The measurements, as described above, are repeated across a rotating wall

frequency range centred around the axial bounce frequency. In figure 4.7 a typical

result for Γ(fRW ) is shown up until till a certain frequency difference with respect

to f0. The compression curves can be fitted using equation 4.25 resulting in values

for the damping factor, κ, central frequency, f0, and frequency response width, δ.

At frequencies which result in no compression an attempt to fit σ(t) often

results in a false compression rate with a very large uncertainty associated with it,

an example of which may be seen in figure 4.8. On occasion the errors associated

with these false compression rates is artificially small and so has a large effect on

weighted fitting algorithms. To overcome this problem two criteria are invoked
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Figure 4.6: A typical compression curve showing the time evolution of the cloud
width, σ(t). The solid line is a fit using equation 4.27 giving
Γ = 67.9±6.2 s−1 and γ = 118±19 mm s−1. The rotating wall was at
a frequency 9.54 MHz and with a peak-to-peak amplitude of 0.5 V.
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Figure 4.7: An example of a frequency response curve taken with a rotating wall
peak-to-peak amplitude of 0.5 V. The solid line is a fit of the form
given by equation 4.25 giving κ = 349±17 s−1, δ = 83.4±6.1 kHz and
f0 = 9.5373±0.0027 MHz;
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for the data to be included in the fitting. Firstly, the fitted compression rate

must be larger than the smallest resolvable compression rate‡. Secondly the error

associated with the compression rate must be smaller than the compression rate.

Although the second criterion is not strictly necessary it has been found to reduce

the standard errors from the frequency response fit. In figure 4.7 the data-points

which do not meet these criteria are shown in grey and are not used in fitting.
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Figure 4.8: An example of a compression curve showing no variation of the cloud
width, σ, as a function of compression time. The solid line is a fit us-
ing equation 4.27 giving Γ = 40.0±88.6 s−1 and γ = 371±808 mm s−1.
This demonstrates the problem with attempting to fit such a compres-
sion curve using an exponential. The rotating wall was at a frequency
of 9.04 MHz and had a peak-to-peak amplitude of 0.5 V.

4.2.2 Amplitude Dependence

The behaviour of δ, κ and ω0 = 2πf0 for varying rotating wall peak-to-peak

amplitudes has been investigated. It has been reported previously [26] that at

high rotating wall amplitudes the positrons may be lost from the trap; presumably

due to heating of the cloud. The rotating wall amplitudes here have been kept

‡This is taken as the reciprocal of half of the smallest time for which the rotating wall was
applied during a measurement (Γ ≤ 1000 s−1).
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below 1 V peak-to-peak in an attempt to minimise this potential problem. It

may also be envisaged that at high amplitudes the positrons may gain enough

energy to travel up the potential well into regions which deviate significantly from

a harmonic form.

Figure 4.9 shows the fitted frequency response widths from a series of measure-

ments with varying rotating wall peak-to-peak amplitudes. The direct propor-

tionality of the frequency response width and rotating wall amplitude is supported

in the data. This linear behaviour is in agreement with the prediction given by

equation 4.24b. For a quantitative comparison with theory the fitted gradient of

203±10 kHz V−1 must be corrected for the attenuation introduced by the phase

splitters, detailed in section 2.2, and for the peak-to-peak amplitude, and so the

corrected gradient is 63±4 kHz V−1.

Figure 4.10 shows the electrodes which form the second stage of the accumu-

lator along with the on-axis potential used for these studies. In an attempt to

calculate a theoretical value for the gradient of the linear fit shown in figure 4.9,

an expansion of equation 3.60 up to the linear term about a point z = zc may be

used:

u(z = zc, r ¿ r0, θ) = Vr
2
√

2

πL

(( ∞∑
m=0

sin (kmz0) cos (kmzc)

I1 (kmr0)

)

−
( ∞∑

m=0

km sin (kmz0) sin (kmzc)

I1 (kmr0)

)
(z − zc)

+ O (z − zc)
2

)
r cos(ωrt+ θ), (4.28)

The base of the potential well is located 3 mm from the centre of the rotating wall

electrode, thus zc = 3 mm. The electrodes used r0 = 20.5 mm, z0 = 12.5 mm

and L = 8z0 (as suggested by [57]), result in a coefficient of the linear term

of 589 s−2. Using the system parameters (fz = 9.59 MHz, B = 50 mT ) with

this linear term coefficient gives a predicted gradient of 23 kHz V−1. This is

not really an accurate estimate of the gradient given that the cloud is estimated

to be 5 mm in length. Using zc = 5.5 mm gives a linear term coefficient of

1053 s−2 and hence a predicted gradient of 40 kHz V−1. Given the crude nature
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of these approximations to this experiment these estimates are within reasonable

agreement to the fitted (63±4) kHz V−1. A plot of the linear coefficient as a

function of zc shows the coefficient increasing almost linearly until the edge of

the rotating wall electrode (see figure 4.11) This calculation offers others wishing

to use an asymmetric rotating dipole field a chance to estimate, at least to an

order of magnitude, the frequency range, δ, over which their rotating wall will

show compression.
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Figure 4.9: The frequency response width, δ, as a function of the applied rotating
wall amplitude. The linear fit (red) has a gradient of 203±10 kHz V−1.

Figure 4.12 shows that the rotating wall frequency corresponding to maximum

compression rate, f0, is independent of the rotating wall amplitude (within error)

as predicted by equation 4.25. The actual f0 value of 9.5351±0.0015 MHz is a

little off a value calculated from the on axis potential and the applied magnetic

field of 9.62 MHz. This 0.1% deviation is most likely due to inaccuracies in

the voltages applied to the electrodes as the amplifiers are not calibrated to a

sufficient accuracy.

It might be expected that the viscous drag co-efficient, κ, be related to the

inelastic scattering cross section and pressure of the cooling gas used. The data

presented in figure 4.13 shows that the viscous drag coefficient has a strong de-

pendence on the rotating wall amplitude. Reference [59] compares the energy
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Figure 4.10: The second stage of the positron accumulator. Top: Electrodes.
Bottom: the axial potential during compression.
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Figure 4.11: The variation of the linear coefficient as given in equation 4.28 as
a function of the offset position, zc. (r0 = 20.5 mm, z0 = 12.5 mm
and L = 8z0)
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Figure 4.12: The central frequency, f0, as a function of the applied rotating wall
amplitude.

dependence of the inelastic scattering cross sections of both electron and positron

impact with carbontetrafluoride (CF4), which is also often used as a cooling gas

in positron accumulators. The high electronegativity of fluorine (3.98§) compared

with that of carbon (2.55) means that the bond has a strong dipole moment. As

discussed in [60] the ν3 inelastic scattering cross section for both positrons and

electrons is similar, most likely due to the large charge transfer between the car-

bon and fluorine atoms. To date no experimental data measuring the inelastic

scattering cross section of low energy positrons on SF6 has been published. The

same arguments as presented in [60], however, may be extended to the S-F Bond

as sulphur also has a low electronegativity (2.58) comparable to that of carbon.

Figure 4.14 shows a comparison of the Born-dipole approximation with that of

experimental results for low energy electrons scattering on SF6. It is qualita-

tively similar to the variation of the viscous drag coefficient with rotating wall

amplitude, a result which may be indicative of the shortcomings of the viscous

drag model. In reality the positrons will experience an acceleration in the time

between collisions due to the electric field and will therefore tend to a finite mean

energy.

§As measured on the Pauling electronegativity scale
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Figure 4.13: The damping coefficient, κ, as a function of the applied rotating wall
amplitude.

Figure 4.14: A comparison of the prediction of the Born direct point-dipole mech-
anism for ν3 excitation with experimental data for low-energy elec-
tron scattering by SF6. The maximum in the calculated cross section
has been scaled roughly to the maximum of the experimental data
[58].
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4.2.3 Well Shape Dependence

By varying the potential applied to electrode 4 (E4 in figure 2.5) it is possible to

modify the well shape and hence the bounce frequency of the trapped particles.

The trap potential can be calculated either using an analysis similar to that

presented in section 3.3 or by using a finite difference approach to solve Laplace’s

equation as is done by many pieces of proprietary software. Using Simion R© the

on-axis potential was calculated for varying values of potential applied to E4

and, by producing a quadratic fit about the potential minimum, it was possible

to calculate the bounce frequency a particle in the trap would exhibit.

It was later realised that changing the potential applied to E4 not only mod-

ified the well shape but also the position of the potential minimum. This would

modify the effective amplitude of the rotating dipole as given by the linear ex-

pansion in equation 4.28. The quadratic fits to the simulated on-axis potential

allowed an estimate of the offset of the trap minimum relative to the centre of

the rotating wall electrode, zc, to be made. The offset positions, zc, linear coef-

ficients, az, and predicted bounce frequencies, fz, as the voltage on E4 is varied

are tabulated in table 4.3.

Table 4.3: Calculated offsets of well base to the centre of the rotating wall elec-
trode, zc, the resultant linear coefficients given by equation 4.28, az

and the predicted axial bounce frequencies, fz, as the voltage applied
to E4 is varied.

E4 Potential [V] zc [mm] az [s−1] fz MHz
27.0 2.1 414 10.26
27.5 2.5 492 9.92
28.0 3.0 589 9.59
28.5 3.5 685 9.20
29.0 4.1 799 8.79
29.5 4.8 928 8.32
30.0 5.7 1088 7.79
30.5 6.7 1255 7.18
31.0 8.0 1449 6.43
31.5 9.7 1649 5.49

The frequency scans produced may be seen in appendix C. In addition to



CHAPTER 4. CHARGED CLOUD COMPRESSION 90

the movement of the potential minimum, the shallower wells allow particles to

travel further into the anharmonic region of the potential, causing an increased

broadening of the frequency response width as well as producing an asymmetric

shape. This effect is most noticeable in the latter graphs given in appendix C.

By assuming a magnetic field of 50 mT and that the maximum compression

rate is obtained when f0 = fz+fm it is possible to determine the bounce frequency

of the particle from the fitted values of f0. This has been done in producing

figure 4.15 and is compared with the value calculated by using a quadratic fit

to the on axis potential. The deviation between the calculated and measured

frequencies may be accounted for by the poor calibration of the amplifiers used

to apply the potentials on the accumulator electrodes.
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Figure 4.15: The variation of bounce frequency, fz, as the potential applied to
E4 is varied: calculated (red) and determined from the fits to the
frequency scans (blue).

Figure 4.16 shows the variation of the fitted compression widths with the

bounce frequency; both determined from the fits shown in appendix C. It was only

possible to vary the bounce frequency over half a decade while still maintaining

an acceptable signal, and so it is difficult to prove the power law dependence

predicted by equation 4.24b. In an attempt to demonstrate the ω
− 1

2
z dependence

given in equation 4.24b, the data was plotted on a log-log scale and a linear fit
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produced.

The linear fit gave a gradient, and hence power law dependence, of -1.80±0.23.

The difference between this value and the expected -0.5 may be accounted for, as

alluded to earlier, by the variation of the position of the potential minimum of

the trap. In an attempt to compensate for this effect the same data are plotted

in figure 4.18 with the ordinate values divided by the linear coefficients given in

table 4.3. When plotted on a log-log scale, this compensated data gives a power

law dependence of -0.33±0.27, however as may be seen from figure 4.19 this does

not represent a satisfactory fit. This does however illustrate that the power law

dependence of this dataset is dominated by the shifting of the potential minimum.

In summary, the experiments described in this chapter support the theoretical

formalism which has been developed. The frequency response shapes are cusps

which are described the form given in equation 4.25. The linear dependence

of the frequency response width with rotating wall amplitude predicted by the

model is supported by experimental results. It is evident from the variation of the

fitted damping parameter with rotating wall amplitude that the simple Stokes’

viscous drag model is failing to capture some of the physics of this system. The

shortcomings of the Swansea positron accumulator to approximate the theoretical

model set-up is apparent in the measurements taken in which the potential on

an electrode (E4) has been varied in order to modify the trapping potential.

Modifications to the accumulator are suggested in the concluding chapter which

may overcome these problems.
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Figure 4.16: The frequency response width, δ, as a function of the measured
bounce frequency, fz.
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Figure 4.17: The frequency response width, δ, as a function of the measured
bounce frequency, fz, presented on a logarithmic scale. The linear
fit gives a gradient of -1.80±0.23 on the logarithmic scale.
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Figure 4.18: The frequency response width, δ, divided by the linear coefficients,
az (given in table 4.3) as a function of the measured bounce fre-
quency, fz.
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Figure 4.19: The frequency response width, δ, divided by the linear coefficients,
az (given in table 4.3) as a function of the measured bounce fre-
quency, fz, on a logarithmic scale. The linear fit gives a gradient
-0.33±0.27 on the logarithmic scale.



Chapter 5

Accumulation Experiments

“Nid da lle gellid gwell - (It is) not good where it could be better”

— John Llewellyn Jones (c. 2000)

The improved accumulation yield caused by the application of the rotating

wall electric field has been presented elsewhere [26, 27]. These measurements,

which involve the application of the rotating wall during the accumulation stage,

are extremely interesting from an applications point of view, but are quite difficult

to interpret. Unlike the results presented in the previous chapter, positrons were

continually added to the trap and thus the results are a convolution of the rotating

wall and accumulation effects.

5.1 Improvements in Accumulated Yield

5.1.1 Cooling Gas Pressure Effects

Accumulation curves were taken for varying pressures of the buffer, N2, and

cooling, SF6, gases both with and without the rotating wall electric field applied

during accumulation. An analysis as detailed in section 3.2 was performed on the

94
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accumulation data to obtain values for the trap storage parameter, n∞, loss rate,

λ, and accumulation rate, R.

5.1.1.1 Accumulation without Rotating Wall

As shown in section 3.2 molecular nitrogen is an excellent buffer gas, however, it

is a poor cooling gas. Conversely sulphurhexafloride is an excellent cooling gas,

but a poor buffer gas (see table 3.2). The results of this experiment, as presented

in figure 5.1 (top), shows that increasing the SF6 pressure does not significantly

modify the capture efficiency, and hence the accumulation rate remains unchanged

within experimental uncertainty.

To a first order approximation the loss rate of the trap with the additional

gas is predicted to behave as

λ = CPN2 +DPSF6 (5.1)

Where C and D are related to the Zeff (the effective number of electrons, see

section 5.1.2) and transverse diffusion coefficient of the positron in the N2 and

SF6 respectively. Figure 5.1 (middle) shows a plot of the loss rate as the buffer

and cooling gas pressures are varied. The lifetime of the trap is diminished by an

increased cooling gas pressure due to increased annihilation and radial transport.

5.1.1.2 Accumulation with Rotating Wall

The same experiments as presented in the previous section were performed, but

now with a rotating wall electric field applied with an amplitude of 2 V at a

frequency of 9.75 MHz. These rotating wall settings had been found previously

to have a significant effect on accumulation.

It would be expected that the rotating wall electric field would have little or no

effect on the accumulation rate of the trap. Experimental results support this as

shown in figure 5.2 (Top). There is a slight deviation of the results corresponding

to an SF6 pressure of 1 × 10−6 mbar which may be due to the moderator efficiency

as these measurements were taken over two days. The moderator efficiency was

not monitored at this time.
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Figure 5.1: The accumulation rate R (top), loss rate λ (middle) and sat-
uration level n∞ (bottom) as a function of buffer and cooling
gas pressure without the application of the rotating wall. (PSF6 :
¥ 0 mbar; • 1.0×10−6 mbar; N 5.0×10−6 mbar; ¨ 7.5×10−6 mbar;
H 1.0×10−5 mbar; F 2.0×10−5 mbar .) The solid lines (middle) are
linear fits of the form given in equation 5.1.



CHAPTER 5. ACCUMULATION EXPERIMENTS 97

The loss rate of the trap still appears to have a linear behaviour at low cooling

gas pressures, as can be seen in figure 5.2 (middle), however this linear dependence

seems to be lost at the higher pressures. The reason for the deviation is as yet

undetermined. The red dashed line in figure 5.2 (middle) is the linear fit to the

trap loss rate for no SF6 from figure 5.1 (middle). When no SF6 is present the

loss rate with the rotating electric field applied is increased, presumably due to

heating, however is it drastically decreased when there is sufficient cooling gas.

Care must be taken when comparing the n∞ values shown in Figures 5.1 (bot-

tom) and 5.2 (bottom) as the accumulation rate, R, varied by a factor of around

1/3 between the with and without rotating wall measurements. Despite this it

may be concluded from the plots that, in this instance, using the rotating wall

technique has increased the potential positron storage, n∞, by more than a factor

of 4.

5.1.2 Frequency Scans with Varying Rotating Wall Am-

plitude

The rotating wall was applied at frequency fRW and amplitude V during ac-

cumulation using the potentials given in table 4.2 with buffer, N2, and cooling,

SF6, gas pressures of 2×10−5 mbar; identical to the parameters used for the work

presented in the previous chapter. After a time t the number of accumulated par-

ticles was determined by ejecting the positron cloud and measuring the resultant

annihilation gammas using a CsI detector. A graph of n(t) was fitted with the

function given in equation 3.34 giving the accumulation rate, saturation number

and loss rate. The results of these measurments as a function of the rotating wall

frequency for a number of different amplitudes are shown in figure 5.3.

As expected figure 5.3 (top) shows that the accumulation rate is unaffected

by the rotating wall as observed in the previous subsection. A satisfactory fit to

the loss rate as a function of rotating wall frequency is given by

λ(f) = Λ exp (−Γ(f)τ0) + λ0 (5.2)

where Γ(f) is the function given by the compression theory in the previous chap-
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Figure 5.2: The accumulation rate R (top), loss rate λ (middle) and sat-
uration level n∞ (bottom) as a function of buffer and cooling
gas pressure with the rotating wall applied during accumulation
with an amplitude of 2 V and frequency of 9.75 MHz. (PSF6 :
¥ 0 mbar; • 1.0×10−6 mbar; N 5.0×10−6 mbar; ¨ 7.5×10−6 mbar;
H 1.0×10−5 mbar; F 2.0×10−5 mbar .) The red dashed line (middle)
is the linear fit to the trap loss rate for no SF6 from figure 5.1 (middle).
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ter: equation 4.25. In Figure 5.3 (middle) the data have been fitted with the

above function. The values of central frequency and frequency response width

were fixed at the values given by the amplitude frequency scans in section 4.2.2.

The combination Λ + λ0 may be identified with the loss rate without the

action of the rotating wall. If the rotating wall is able to counteract all radial

loss then λ0 is identified with the loss rate caused only by annihilation on the

background gas. The free positron annihilation rate in the non-relativistic limit

is given approximatly by [61]

λa ≈ πr2
0cne, (5.3)

where r0 is the classical electron radius and ne is the electron density in the

vicinity of the positron. In a gas of atoms or molecules of number density n,

the electron density is Zn where Z is the number of electrons bound to each

molecule or atom. Thus if the atom/molecule-positron system were undistorted

by the incoming positron the free annihilation rate would be given by

λa = πr2
0cnZ. (5.4)

In reality the positron modifies the charge distribution in a way which typically

enhances the electron density in its vicinity. This complicated effect may be

approximated by replacing the true number of electrons bound to the atom or

molecule, Z, by an effective number Zeff . For a density ρ in Amagat∗ the anni-

hilation rate is given by

λa = 0.201ρZeff , (5.5)

where λa is in units of µs−1.

Using the value of λ0 = 0.75 s−1 from figure 5.3 (middle) and the Zeff of

SF6 of 97, would suggest a pressure in the second stage of the accumulator of

3.8×10−5 mbar. During these measurements the cooling gas pressure was mea-

sured as 2.0×10−5 mbar using a cold-cathode ion gauge located in the annihilation

plate cross. This ion gauge is calibrated with respect to nitrogen pressure and so a

correction factor of 2.2 must be taken into account; thus the true SF6 pressure in

∗An Amagat is the number of ideal gas molecules per unit volume at 1 Bar and 273.15 K.
This is equal to 2.69×1025 m−1 or the Loschmidt constant. It may be calculated from ρ =

P
1 Bar

T
273.15 K
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this cross was around 4.4×10−5 mbar. Given that this pressure would be slightly

higher than the pressure in the second stage of the accumulator, the accord be-

tween the measured and calculated pressures would support the identification of

λ0 with the annihilation limited lifetime. Further investigations are required to

determine the origin of the time parameter, τ0.

5.2 Optimisation for 10 Hz Operation

Given that the Swansea positron accumulator was designed to run optimally

at 10 Hz to match the repetition rate of the pulsed lasers, these studies would

be incomplete without investigating the optimum rotating wall parameters for

10 Hz operation. A series of measurements have been carried out to investigate

the optimum parameters for 10 Hz operation when using the rotating wall during

accumulation.

Figure 5.4 shows the effect on the positron signal as the buffer and cooling

gas pressures are varied with the rotating wall applied during accumulation at

a frequency of 9.75 MHz and amplitude of 2 V. The data for pressures above

5×10−6 mbar show that increasing the cooling gas pressure with these particular

rotating wall settings has little effect on the accumulated number of particles.

This is as expected given that the accumulator is operating at a rate which is far

greater than the trap loss rate, λ. The optimum buffer gas pressure is around

4×10−5 mbar.

The results of a set of measurements for rotating wall frequency scans with

varying amplitudes is shown in figure 5.5. The buffer and cooling gas pressures

were both at 2×10−5 mbar. The central density was determined by masking the

cloud with a circular aperture of radius 2 mm and measuring the transmitted

number of positrons. The CsI detector used for these measurements was in an

uncalibrated location and so the relative sizes of the total signals and central

densities should not be quantitatively compared.

It may be seen that the total signal only increases by a factor of around

1/3 across a band of frequencies centred around 9.4 MHz. The small increase

in signal is again because the trap was operating at a rate which was greater

than the loss rate of the trap. A rotating wall of at least 1 V is required for
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Figure 5.3: The accumulation rate R, trap loss rate λ and saturation level n∞ for
rotating wall frequency scans with varying amplitude applied during
accumulation. The lines in the upper and lower images join the points
to guide the eye. The lines on the middle image is a fit of the form
given in equation 5.2. (Amplitudes: N 0 V; • 0.1 V; ¥ 0.5 V; ¨ 1 V.)
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Figure 5.4: The positron signal at 10 Hz operation for varying buffer N2 and
cooling SF6 gas pressures with the rotating wall applied with an am-
plitude of 2 V and frequency of 9.75 MHz during accumulation. (PSF6 :
¥ 0 mbar; • 1.0×10−6 mbar; N 5.0×10−6 mbar; ¨ 7.5×10−6 mbar;
H 1.0×10−5 mbar; F 2.0×10−5 mbar .)
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a significant increase in the central density. The frequency corresponding to the

maximum measured central density is close to the frequency corresponding to the

maximum compression rate as measured in the previous chapter.
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Figure 5.5: The positron signal at 10 Hz operation for rotating wall frequency
scans performed at different amplitudes. (Amplitudes: N 0 V; • 0.1 V;
¥ 0.5 V; ¨ 1 V .) Solid: Total signal; Hollow: Central Density. The
CsI detector used for measuring the signals for the central density
was in an uncalibrated location and so the total and central density
signals should not be compared directly.



Chapter 6

Final Remarks

“The oldest, shortest words - ‘yes’ and ‘no’ - are those which require the most
thought”

— Pythagoras

6.1 Conclusions

A model has been developed which successfully describes the frequency response

of the compression rates as measured using the Swansea positron accumulator.

The frequency response curves are cusp shaped with the maximum compression

rate achieved when the rotating wall frequency is at the sum of the bounce and

magnetron frequency of the trapped particle. Unlike Dehmelt’s side-band cooling,

expansion is not observed at the so-called lower side-band when the rotating wall

frequency is at the bounce frequency minus the magnetron frequency [44]. The

accuracy to which the frequencies may be predicted is limited by the calibration

of the amplifiers used to apply the potentials onto the accumulator electrodes, as

well as the anharmonicities of the trap.

The width of the frequency response curves were found to be proportional to

104
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the rotating wall amplitude, in agreement with the theoretical model. By approx-

imating the electric potential produced by a four-segment rotating wall electrode,

an equation has been derived which may be used to find a very crude approxima-

tion for the constant of proportionality. Attempts to verify the effect of changing

the bounce frequency by modifying the potential applied to the E4 electrode of

the accumulator (see figure 2.5) failed, as this also moved the location of the

base of the potential well. The Stokes’ viscous drag model used to approximate

the buffer gas cooling fails to capture some of the important physics of positron-

molecule collisions. This is evident in the variation of the damping parameter,

κ, observed as the rotating wall amplitude is varied. A possible solution to this

problem is suggested in the future work section.

The application of the rotating wall electric field during accumulation was

seen to have no effect on the accumulation rate, R, however it was shown to be

very effective at increasing both the traps positron storage parameter n∞ and

the central density of the accumulated cloud. At frequencies near the optimum

compression rate the trap lifetime was equal to the annihilation-limited lifetime on

the cooling gas corresponding, in the case of the Swansea positron accumulator, to

the potential storage parameter being increased by a factor of 7. It may therefore

be concluded that, without the application of the rotating wall, radial transport

is the dominant loss mechanism. The quantitative increase in central density

is not attainable from the data, however qualitatively the central density of the

positron cloud was seen to increase substantially at a frequency which coincided

with the optimum compression frequency provided a sufficiently high rotating

wall amplitude was applied.

At a 10 Hz repetition rate, the increase in particle number caused by the

application of the rotating wall during accumulation was not as dramatic as the

increase in potential storage because the accumulation time was less than the

particle trap time. Even so, the application of the rotating wall caused a large

increase in the central density when it was applied at the appropriate frequency.

This increased density will prove useful for the laser-Ps experiments (detailed in

section 1.2.1) and will allow easier transport of the cloud through narrow pumping

restrictions.
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6.2 Future Work and Applications

Prior to further studies it would be advisable that a new electrode structure

be constructed which will allow electric potential configurations which will more

closely match the theoretical model presented in section 4.1. The electrodes cur-

rently used in the Swansea positron accumulator should be redesigned as they

are not ideally suited to precision Penning-type trap measurements as it is ex-

tremely difficult to produce a deep harmonic potential well. There are currently

a number of methods which may be employed to design cylindrical Penning traps

such that the harmonic region is maximised, including the use of compensation

electrodes [57]. As well as replacing the electrodes used to create the potential

well, it would be worthwhile installing two adjacent rotating wall electrodes, off-

set from each other by 180 degrees as this would enhance the linear term from

the expansion and reduce the next significant term. A suggested schematic of the

new electrode array is shown in figure 6.1.

RW Electrodes

Compensation Electrodes

Figure 6.1: A Schematic of the recommended replacement electrode structure to
be used for future work. The lengths of the electrodes should be
calculated to maximise the harmonic region of the trap.

In addition to the new electrode array, an alternative cooling mechanism

should be considered. Cooling methods such as cyclotron cooling and damp-

ing via an external circuit [44] are described, in most practical cases, by a term

identical to the Stokes’ viscous drag expression and will therefore offer a more

precise test of the compression model developed in section 4.1. Rapid cyclotron

cooling requires a high magnetic field and so the accumulated positrons would
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need to be transfered into the 5 T magnet currently used for high B-field studies.

Cooling by the use of an external circuit should also be investigated. Further-

more, as mentioned in section 1.2.3, the Swansea positron group is interested in

using positrons which are cooled via cyclotron radiation in a strong magnetic field

to sympathetically cool magnesium ions. A good approximation of the cooling

of a heavy ion on a light buffer gas is given by a Stokes’ viscous drag term [62].

Using this system may offer an alternative method to test the axialisation model

using the magnesium ion cloud rather than the positrons.

If the heating process caused by the application of the rotating wall could be

better understood, then the variation of the damping parameter with the rotating

wall amplitude (figure 4.13) might offer a method of measuring the low energy

inelastic scattering cross sections of positron–molecule collisions. Temperature

measurements could be achieved by slowly lowering the potential applied to the

exit electrode (E5) and measuring the number of escaping positrons. The accurate

determination of the pressure in the second stage will be a limiting factor for any

measurements using the accumulator.

The accumulator with the application of the rotating wall offers a system

which may be used to perform so-called swarm or drift measurements to determine

the mobility of low energy positrons in gases. The potentials applied to the

rotating wall may be switched off and the evolution of the cloud monitored by a

series of phosphor screen images. The Swansea positron group has, on order, a

new CCD camera which if coupled with a micro channel plate (MCP) would be

ideally suited to these types of studies.

The characteristic equation governing the eigenvalues of the rotating wall sys-

tem (equation 4.16) is a quartic equation. An approximation to the solution was

found by fitting parameters to a form which closely matches the exact solution,

however, it should be a future objective to find this by performing approximations

to the roots of the quartic equation given the typical experimental hierarchy,

√
a >> ωc > Ω >> ωz >> ωm >> κ. (6.1)

The measurements taken when the rotating wall was applied during accu-

mulation are convoluted. Although a physically plausible analytic form for the
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behaviour of the lifetime of the trap when the rotating wall is applied during

accumulation has been suggested, it has not been rigorously derived. Further in-

vestigations are necessary to verify this analytic form and to deduce its physical

origin.



Appendix A

V± Decoupling of the Cyclotron

and Magnetron motions

Using the definition of the V± coordinates given in equation 3.13 the magnetron

and cyclotron motions of a particle in a penning trap may be decoupled. The

derivation of equation 3.14, which shows this, is presented here.

V̇± = r̈ − ω∓ẑ × ṙ

= (Ωc − ω∓) ẑ × (
V± + ω∓ẑ × r

)
+ ω2

z

2
r

= (Ωc − ω∓) ẑ ×V± + (Ωc − ω∓)ω±ẑ × (ẑ × r) + ω2
z

2
r

= ω±ẑ ×V± + ω±ω∓
((

»»»: 0
ẑ · r

)
ẑ −

(
»»»: 1
ẑ · ẑ

)
r
)

+ ω2
z

2
r

= ω±ẑ ×V± − ω±ω∓r + ω2
z

2
r

= ω±ẑ ×V± − 1
4
(Ω2

c − (Ω2
c − 2ω2

z)) r + ω2
z

2
r

= ω±ẑ ×V±
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Appendix B

Compression Rates for Varying

Amplitude

This appendix presents the frequency scans, along with fits of the form given in

equation 4.25, for the data presented in section 4.2.2.

Table B.1: The fitted Parameters of the compression rate frequency scans for
different rotating wall peak-to-peak amplitudes

Vpp [V] κ [s−1] δ [kHz] f0 [MHz]
0.1 79.7 ± 7.8 450 ± 240 9.597 ± 0.034
0.2 340 ± 14 65.3 ± 4.9 9.5367 ± 0.0015
0.3 487 ± 30 71.5 ± 5.8 9.5329 ± 0.0021
0.4 384 ± 28 74.9 ± 6.1 9.5303 ± 0.0027
0.5 349 ± 17 83.4 ± 6.1 9.5373 ± 0.0026
0.6 258 ± 14 116.4 ± 8.6 9.5326 ± 0.0036
0.7 251 ± 83 154 ± 11 9.5343 ± 0.0038
0.8 234 ± 11 170 ± 11 9.5264 ± 0.0041
0.9 232 ± 10 181 ± 12 9.5500 ± 0.0043
1.0 179.7 ± 9.5 160 ± 10 9.5472 ± 0.0050
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Appendix C

Compression Rates for Varying

Well Shape

This appendix contains the frequency scans, along with fits of the form given in

equation 4.25, for the data presented in section 4.2.3.

Table C.1: The fitted Parameters of the compression rate frequency scans with a
varying potential applied to electrode E4

VE4 [V] κ [s−1] δ [kHz] f0 [MHz]
27.0 757 ± 83 46.7 ± 6.4 10.2205± 0.0030
27.5 842 ± 47 59.0 ± 4.8 9.8860 ± 0.0016
28.0 439 ± 38 70.5 ± 7.8 9.4940 ± 0.0032
28.5 399 ± 37 84.4 ± 8.5 9.1210 ± 0.0035
29.0 826 ± 73 73.7 ± 7.0 8.6990 ± 0.0031
29.5 1590 ± 120 61.3 ± 3.9 8.1610 ± 0.0020
30.0 1571 ± 86 87.4 ± 5.4 7.6182 ± 0.0025
30.5 1727 ± 68 107.2 ± 5.2 6.9845 ± 0.0022
31.0 1363 ± 40 169.2 ± 8.0 6.1889 ± 0.0033
31.5 1091 ± 33 179.3 ± 6.6 5.0235 ± 0.0041
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